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ABSTRACT
Interdisciplinary collaborations have generated huge impact to so-
ciety. However, it is often hard for researchers to establish such
cross-domain collaborations. What are the patterns of cross-domain
collaborations? How do those collaborations form? Can we predict
this type of collaborations?

Cross-domain collaborations exhibit very different patterns com-
pared to traditional collaborations in the same domain: 1) sparse
connection: cross-domain collaborations are rare; 2) complemen-
tary expertise: cross-domain collaborators often have different ex-
pertise and interest; 3) topic skewness: cross-domain collaboration
topics are focused on a subset of topics. All these patterns violate
fundamental assumptions of traditional recommendation systems.

In this paper, we analyze the cross-domain collaboration data
from research publications and confirm the above patterns. We
propose the Cross-domain Topic Learning (CTL) model to address
these challenges. For handling sparse connections, CTL consoli-
dates the existing cross-domain collaborations through topic layers
instead of at author layers, which alleviates the sparseness issue.
For handling complementary expertise, CTL models topic distri-
butions from source and target domains separately, as well as the
correlation across domains. For handling topic skewness, CTL only
models relevant topics to the cross-domain collaboration.

We compare CTL with several baseline approaches on large pub-
lication datasets from different domains. CTL outperforms base-
lines significantly on multiple recommendation metrics. Beyond
accurate recommendation performance, CTL is also insensitive to
parameter tuning as confirmed in the sensitivity analysis.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Text Mining; J.4 [Social
Behavioral Sciences]: Miscellaneous
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1. INTRODUCTION
Social network analysis focuses on modeling interactions be-

tween people. Researchers have studied various issues in social
networks, such as network properties [6, 11] and generation pro-
cesses [18], link predictions [19, 20, 21, 32] and recommenda-
tions [2, 7, 17]. Despite all the existing research in social networks,
little has been done on analyzing collaborations across two differ-
ent domains.

Interdisciplinary collaborations have generated huge impact to
society. For example, collaborations between biology and com-
puter science revolutionized the field of bioinformatics. Because of
these cross-domain collaborations, originally extremely expensive
tasks such DNA sequencing have become scalable and affordable
to a much broader population. Now medicine and data mining are
working together in the field of medical informatics, which is a big
growth area that is expected to have huge impact on medicine [24].
Indeed, cross-domain collaboration has become increasingly im-
portant. Figure 1 shows the increasing trend of cross-domain col-
laborations over the past fifteen years across different domains in a
publication database (Cf. § 4 for details). In most of the cases, there
exists a clear increasing trend of the cross-domain collaborations.

However, it is often hard for researchers to establish such cross-
domain collaborations. What are the patterns of cross-domain col-
laborations? How do those collaborations form? Can we predict
this type of collaborations? Cross-domain collaborations often ex-
hibit very different challenges compared to traditional collabora-
tions in the same domain:

First, sparse connection, cross-domain collaborations are rare
compared to traditional collaborations within a domain, partly be-
cause it is difficult for an outsider to find the right collaborator in
the field that one does not know. This also makes it challenging
to directly use a supervised learning approach due to the lack of
training samples.

Second, complementary expertise, cross-domain collaborators
often have different expertise and interest; For example, data min-
ing researchers can easily identify who they want to work with in
the data mining field, because the topics are known to them. How-
ever, for a cardiologist who wants to apply data mining techniques
to predict heart failures, it will be difficult for her to find the right
collaborators in data mining. Because these two fields (cardiology
and data mining) are completely different with different terminol-
ogy and problems. It is very difficult for one from cardiology to
identify the right topics in data mining to look for collaborators.

Third, topic skewness, not all topics are relevant for cross-
domain collaborations. In fact, in our study, only less than 9% of
all possible topics pairs across domains have collaborations. There-
fore, for the task of cross-domain collaboration recommendation,
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Figure 1: The comparison of existing collaboration and new collaboration trends over years. DM - Data Mining domain; MI -
Medical Informatics domain; TH - Theory domain; VIS - Visualization domain; DB - Database domain. The trends of cross-domain
collaborations in all but one case are growing (The exception between DM and VIS remain roughly constant over time). Newly
formed cross-domain collaborations are significantly in all cases.

we should focus on better modeling those topics with high proba-
bility of having cross-domain collaborations.

Despite of the above challenges, once such cross-domain col-
laboration is successfully formed, its impact is usually tremen-
dous. In our study, cross-domain collaborations constitute a small
portion of all possible collaborations as shown in Figure 1. The
trends of cross-domain collaboration in many cases are growing.
Newly formed cross-domain collaborations are significant in all
cases, which confirmed the potential need for cross-domain col-
laborations.

Based on these observations, we propose the Cross-domain
Topic Learning (CTL) method that addresses all three challenges
including sparse connection, complementary expertise and topic
skewness. CTL is a generative topic model that differentiates rele-
vant topics to cross-domain collaboration from other topics.

We compare CTL with several baseline approaches on large pub-
lication data sets of different domains. CTL outperforms others
significantly on recommendation metrics. Beyond accurate rec-
ommendation performance, CTL is also insensitive to parameter
tuning as confirmed in the sensitivity analysis. Finally, we inte-
grate CTL into a large-scale web application for recommending
cross-domain research collaborators, which further demonstrates
the scalability of CTL in handling real-time queries.

The rest of this paper is organized as follows: Section 2 for-
mulates the cross-domain recommendation problem formally; Sec-
tion 3 presents our proposed methods on cross-domain recommen-
dation; Section 4 describes the experiments; Section 5 presents the
related work; then we conclude in Section 6.

2. PROBLEM DEFINITION
We present required definitions and formulate the problem of

cross-domain collaboration recommendation. Without loss of gen-
erality, we assume there are two domains, the source domain and
the target domain. Our goal is to recommend potential collabora-
tors in the target domain for a specific user from the source domain.

Definition 1. Source/Target domain. The source (or target) do-
main can be represented as a social network G = (V,E,X), where
V is a set of |V | = N users and E ⊆ V × V is a set of undirected
(collaborative) relationships between users, X is an N×d attribute
matrix in which every row corresponds to a vector of attribute val-
ues of a user. We use xj to denote the jth attribute.

We use superscript S and T to differentiate the source domain
and the target. If there is no ambiguity, we will omit S for the
source domain and use superscript ′ for the target, for brevity. Sup-
pose each user vi is associated with d attributes. For example, in the

research collaboration network, each user is associated with a set
of publication papers or a set of words appearing in those papers.
Given this, we have the following definition:

Definition 2. Domain-specific topic models. A topic model θi
of a user vi is a multinomial distribution of attributes {P (xj |θi)}j .
Then a domain is considered as a mixture of multiple user-specific
topic models. The assumption behind is that attributes associated
with the user are sampled following a distribution corresponding to
each topic, i.e., P (x|θi).

Such a definition is usually used in the LDA/PLSI style topic
models [4, 15]. According to the above definition, attributes with
the highest probability associated with each topic would suggest the
semantics represented by the topic. For example, a “Data Mining”
topic discovered from the publication data can be represented by
keywords “clustering”, “learning”, “classification”, etc.

The input of our problem consists of a source domain GS and a
target domain GT , each associated with topic models. Please note
that the source domain and the target domain can be overlapping,
i.e., V S ∩ V T �= ∅. Given this, we can precisely define the fol-
lowing problem:

Problem 1. Cross-domain collaboration recommendation.
Given (1) a source domain GS and a target domain GT , (2) topic
models θ and θ′ associated with users in the two domains respec-
tively, the goal is to rank and recommend potential collaborators in
the target domain for a specific user vq from the source domain.

The fundamental challenge of this problem is how to capture the
collaboration patterns across different domains. Within the same
domain, homophily is often considered as the driven force for the
formation of collaborative relationships, which suggests that peo-
ple with the similar interest (topic model θ) tend to collaborate with
each other. However, in the cross-domain setting, the problem is
very different. Technically, it is challenging to extract and discrim-
inate topics in the two domains. In particular, given a specific user
and her topic distribution from the source domain, on which topics
and with whom should she collaborate in the target domains?

3. CROSS-DOMAIN TOPIC LEARNING
We begin by considering some baseline solutions and then pro-

pose our cross-domain topic learning approach. A simple approach
to the problem is to construct a collaboration graph connecting
users between source and target domains and then use a random
walk with restart algorithm [28] to rank collaborators in the target
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Figure 2: Graphical representation of the three recommendation models: author matching, topic matching, and CTL.

domain. We call this method Author Matching. The details of the
algorithm are described in Section 3.1.

The problem with Author Matching is the sparse connections be-
tween authors across two domains. To alleviate this problem, the
second model is to consolidate the correlation between the under-
lying topics. Suppose each domain has T different topics and each
user has a distribution over the topics. We can augment the collab-
oration graph with two topic layers (as shown in Figure 2(b)). The
links between the two topic layers indicate the alignment between
topics, which implicitly represents the complementary expertise
between users. Based on this representation, a random walk with
restart algorithm can be again applied to the graph to rank (both
topic and user) nodes in the target domain. We call this method
Topic Matching, and details are described in Section 3.2.

Topic matching improves the cross domain connections through
a subset of topic pairs from source domain to target domain. How-
ever, not all topic pairs are relevant for collaboration (topic skew-
ness). Therefore, blindly computing all topics from source and tar-
get domains are not necessary for collaboration recommendation
and often lead to sub optimal results. One challenge here is how to
differentiate relevant “collaboration” topics from other topics. We
further design a Cross-domain Topic Learning (CTL) algorithm to
address this challenge in Section 3.3.

3.1 Author Matching
Based on the historic cross-domain collaborations, we create a

collaboration graph, as shown in Figure 2(a). The problem is to
rank relevant nodes in the target domain GT for a given query node
vq in the source domain GS . Measuring the relatedness of two
nodes in the graph can be achieved using the Random Walks with
Restarts (RWR) theory [22, 28]. Starting from node vq , a RWR
is performed by following a link to another node according to the
weight of the link at each step.1 Also, in every step, there is a
probability τ to return the node vq . The relatedness score of node
vi wrt node vq is defined as the stationary probability ri that the
random walk will finally arrive node vi, i.e.,

r(t+1) = (1− τ)S · r(t) + τq (1)

where r(t) is a vector with each element rti denoting the probability
that the random walk at step t arrives at node vi; q is a vector of
zero with the element corresponding to the starting node vq set to
1, i.e., qvq = 1; S defines the transition probability of the random
1In the author matching method, we use a uniform weight, i.e.,
weights of links of a node v to its neighbors are defined as 1

NB(v)
,

where NB(v) is the number of neighbors of node v. In §3.2, we
will introduce how to define the weight based on topic model.

walk, with element Sij denoting the random walking probability
from node vi to node vj .

3.2 Topic Matching
The author matching method only considers the network struc-

ture information, but ignores the content (topic) information. How
do people collaborate across different domains? And what are the
hottest topics on which people from different domains tend to col-
laborate?

Recently, probabilistic topic models have been successfully ap-
plied to multiple text mining tasks to extract topics from text [4,
15, 27]. We employ an Author-Conference-Topic (ACT) model
[31], which utilizes the topic distribution to represent the inter-
dependencies among authors, papers, and publication venues.2 The
model simulates the process when people collaborate on a work,
e.g., writing a scientific paper, using a series of probabilistic steps.
In essence, for each object it estimates a mixture of topic distribu-
tions which represent the probability of the object associated with
every topic. Such as for each author v, we have a set of probabilities
{P (zi|v)}i or {θvzi}i, respectively denoting how likely author v is
interested in topic zi. Similarly, we have {P (xj |z)}j or {φzxj}j ,
the probability of attribute xj (e.g., a keyword) given topic z. We
use Gibbs sampling to learn the probabilities. The interested reader
can refer to [31] for more details.

Combining topic model into random walk. We now discuss
how to combine the topic model into the random walk framework.
First, we apply the ACT model to the source and the target do-
mains respectively and obtain two sets of topic distributions. Then
we estimate the alignment between topics of these two domains.
We calculate the alignment according to the historic cross-domain
collaborations. Specifically, the strength of the alignment between
topic zi from the source domain and topic z′j from the target do-
main is estimated by:

Sziz
′
j
=

1

κ

∑

(v,v′)∈EST

[P (zi|v) + P (z′j |v′)] (2)

where κ is a normalization factor; (v, v′) ∈ EST indicates a cross-
domain collaboration between v and v′.

We augment the graph generated in the author matching method
with topic nodes {z} and {z′} extracted from the two domains.
Figure 2(b) shows the graphical structure, which suggests that a
random walk can be performed from a user v to a topic z and from

2The ACT model can be considered as an extension of LDA [4],
but considers the collaborative relationships between users and
the difference of various objects (e.g., author, paper, and confer-
ence/journal).
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Input: a source domain GS and a target domain GT

Output: estimated parameters θ,θ′,φ, ϑ, and λ

Initialize an ACT model in GS by learning from documents written by
authors only from GS ;
Similarly, initialize an ACT model for target domain GT ;
foreach collaborated document d do

foreach word xdi ∈ d do
Toss a coin sdi according to bernoulli(sdi) ∼ beta(γt, γ),
where beta(.) is a Beta distribution, and γt and γ are two
parameters;
if sdi = 0 then

Randomly select a pair (v, v′) from d’s authors, where v
is an author from GS and v′ from GT ;
Draw a topic zdi ∼ multi(ϑvv′ ) from the topic
mixture ϑvv′ specific to (v, v′);

end
if sdi = 1 then

Randomly select a user v;
Draw a topic zdi ∼ multi(θv) from the topic model of
user v;

end
end
Draw a word xdi ∼ multi(φzdi ) from zdi-specific word
distribution;

end

Algorithm 1: Probabilistic generative process in CTL.
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Figure 3: Graphical representation of CTL model.

a topic z of the source domain to a topic z′ of the target domain
(and vice versa). The link weight between user node v and topic
node z is defined as the probability P (z|v) obtained from the ACT
model. Then the relatedness of the query node to a target topic z′

is defined by a similar formula as that in Eq. 1 and analogously we
can define the relatedness between the query node and user nodes
in the target domain.

3.3 Cross-domain Topic Learning (CTL)
The topic matching method does not discriminate the “collabo-

ration” topics from those topics existing in only one domain. As
a result, the “irrelevant” topics (irrelevant to collaboration) may
hurt the collaboration recommendation performance. We develop a
new topic modeling approach called Cross-domain Topic Learning
(CTL) to model topics of the source domain and the target domain
simultaneously.

Model description. The basic idea here is to use two correlated
generative processes to model the source and the target domains
together. The first process is to model documents written by authors
from single domain (either source or target). The second process is
to model collaborated documents. For each word in a collaborated
document, we use a Bernoulli distribution to determine whether
it is generated from a “collaboration” topic or a topic-specific to
one domain only. Figure 3 shows the graphical structure of the

Table 1: Notations in the CTL model.
SYMBOL DESCRIPTION

T number of topics
d a collaborated document
Ad a set of authors of document d
xdi the ith attribute (word) in document d
zdi the topic assigned to attribute xdi

sdi if xdi is a word from a single domain or a cross domain
θv multinomial distribution over topics specific to author v
ϑvv′ multinomial distribution over topics specific to author

pair (v,v′)
φz multinomial distribution over words specific to topic z
α, β Dirichlet priors to multinomial distributions θ, θ′ and φ
λ parameter for sampling the binary variable s

γ, γt Beta parameters to generate λ

CTL model. (For simplicity, we omit the modeling part for single
domain and focus on the modeling of the collaborated documents.)
CTL models each cross-domain collaborated document using topic
models of authors from the source domain and the target domain.

Let us briefly introduce notations. Ad is a set of authors of doc-
ument d; v is an author and (v, v′) is an author pair randomly sam-
pled to be responsible for word x; s is a binary variable indicating
whether the current word inherits the topic from a single domain
(s = 1) or by a cross-domain collaboration s = 0; θ and θ′ are
topic models from the source domain and the target domain, re-
spectively; ϑvv′ is a collaboration topic model specific to author
pair (v, v′); α is the Dirichlet hyperparameter; λ is a parameter
for sampling the binary variable s; γ and γt are Beta parameters
to generate λ. Table 1 summarizes the notations used in the CTL
model.

Formally, the generative process is described in Algorithm 1:
first, documents of the two domains GS and GT are partitioned
into three clusters: documents written by authors only from the
source domain, documents written by authors only from the tar-
get domain, and documents collaborated by authors from both do-
mains. Then CTL respectively extracts topics of authors from the
first two document clusters (without cross-domain collaborations)
according to the distributionp(θv|α) and p(θ′v′ |α), where α is the
Dirichlet prior. For simplicity, we use the same prior α for both
source and target domains.

Second, CTL models the cross domain collaboration documents.
For each word xdi in document d, a coin s is tossed according to
p(s|d) ∼ beta(γt, γ), where beta(.) is a Beta distribution. When
s = 1, a single user v (or v′) is chosen according to a uniform
distribution, then the word xdi is sampled from a selected topic
zdi specific to the user v, according to θv (therefore, this is not a
cross-domain collaboration). When s = 0, a pair of cross-domain
collaborators (v, v′) are selected, and a new multinomial distribu-
tion ϑvv′ is constructed by combining θv and θv′ (therefore, cross-
domain collaboration is formed). More specifically, we first expand
the source and target topic spaces to be of the same dimension. For
example, if source domain has 10 topics and target domain 5 top-
ics, the expanded topic space will have 15 topics (10 from source
domain and 5 from target domain). The expanded source topic
distribution θ̃v =< θv, 0, . . . , 0 >, where we set 0 on the target
topics. Similarly, we define the expanded target topic distribution
to be θ̃′v′ =< 0, . . . , 0, θ′v >. The new distribution ϑvv′ is then
defined as θ̃v + θ̃v′ , a simple mixture of the two expanded multi-
nomials of θv and θv′ [5]. Finally the word xdi is sampled from a
collaboration topic zdi according to the new distribution ϑvv′ .

Figure 4 illustrates an example of CTL learning. Before CTL
learning, each author only has topic distribution in either source or
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Figure 4: Intuitive explanation of the CTL learning. ε is a pa-
rameter to select collaboration topics.

target domain (zero probability on topics from the other domain).
Then, CTL smoothes topics distributions across the two domains.
Users from the source domain will also have a probability over top-
ics extracted from the target domain, and vice versa. After training
the CTL model, we also obtain a set of “collaboration topics” be-
tween the two domains, i.e., topics with the highest posterior prob-
abilities P (z|s = 0, ·) (or P (z|s = 0, ·) > ε) in the collaborated
documents. (Here, · indicates all the other parameters we should
consider when calculating the probability.) For example in right
hand side of Figure 4, the box indicates those collaboration topics.

Model inference. We use Gibbs sampling to estimate unknown
parameters {θ, θ′, ϑ, φ, λ} in the CTL model. In particular, we
evaluate (a) the posterior distribution on z′ (or z) for each word
in the document written by authors only from a single domain and
then use the results to infer θ′ (or θ); (b) the posterior distribution
on s, and then use the sampling results of z and z′ according to s
to update ϑ, θ and θ′. Finally, λ and φ can be inferred from the
obtained topic models. More specifically, we begin with the joint
probability of all documents in the two domains, and then using the
chain rule, we obtain the posterior probability of sampling the topic
for each word. For (a) we use the same sampling algorithm as that
for the LDA model (or the ACT model) (cf. [13] or [31]), i.e. with
the posterior probability:

P (zdi|z−di, x, ·) = n−di
vzdi + α

∑
z(n

−di
vz + α)

× m−di
zdixdi

+ β
∑

x(m
−di
zdix + β)

(3)

where nvz is the number of times that topic z has been sampled
from the multinomial distribution specific to a randomly selected
author v; mzx is the number of times that word x has been gener-
ated by topic z; the number n−di with the superscript −di denotes
a quantity, excluding the current instance. We use a similar process
for both domains.

For parameter estimation in (b), we consider a two-step Gibbs
sampling. We first sample the coin s according to the posterior
probability: (Detailed derivation is given in Appendix.)

P (sdi = 0|s−di, z,·) =
n−di
ds0

+ γt

n−di
ds0

+ n−di
ds1

+ γt + γ

×
n−di
vv′zdi

+ (nvzdi + nv′zdi ) + α
∑

z(n
−di
vv′z + (nvzdi + nv′zdi ) + α)

(4)

where nds0 is the number of times that s = 0 has been sampled in
document d; (v, v′) is the selected user pair to be responsible for

xdi; nvv′z is the number of times that topic z has been sampled
from user pair (v, v′). P (sdi = 1|·) can be analogously defined as
the above equation. The only difference is to replace the sum of the
two terms (nvzdi + nv′zdi) with the number by a selected single
user v (or v′).

The posterior probability of topic z is defined as:

P (zdi|sdi = 0, x, z−di,·) =
m−di

zdixdi
+mzdixdi +m′

zdixdi
+ β

∑
x(m

−di
zdix +mzdix +m′

zdix
+ β)

×
n−di
vv′zdi

+ (nvzdi + nv′zdi ) + α
∑

z(n
−di
vv′z + (nvz + nv′z) + α)

(5)

where m−di
zx is the number of times that word x has been generated

by topic z in the collaborated documents; mzx and m′
zx respec-

tively represents the number of times that word x has been gener-
ated by topic z in the source domain and that in the target domain.

During the parameter estimation, the algorithm keeps track of a
V × T (user by topic) count matrix for both domains, a D × 2
(collaborated document by coin), a 2 × T (coin by topic) count
matrices, and a AP × T (user pair by topic) count matrix (AP is
the number of user pairs). Given these matrices, we can estimate
the probabilities of θ, θ′, ϑ, φ, and λ.

Cross-domain recommendation via random walk. We com-
bine the learned “collaboration” topics by CTL into the collabora-
tion graph (Cf. Figure 2(c)). In principle, there could be a link
between any user node and topic node (the difference is the link
weight). To control the density of the constructed network, we
define a parameter ε and add links between users and topics only
when P (z|s = 0, ·) > ε. A smaller ε results in a more dense
network. Random walk with restart is then performed on the topic
augmented graph to calculate the relatedness between users from
the target domain and the query user node in an analogous way as
done in Eq. 1. Finally we rank users in the target domain accord-
ing to the estimated relatedness scores and recommend users with
the highest relatedness. One advantage of the CTL model is that
it is able to recommend “related” collaboration topics based on the
relatedness scores between the query node and the topic nodes. In
topic matching, we could also consider recommending topics based
on the relatedness scores; however, the recommended topics might
be irrelevant to collaboration. In CTL, the recommended topics
directly reflect existing collaborations across the two domains.

The CTL model can be also generalized to multiple domains.
The basic idea is to use a multinomial distribution to replace the
Bernoulli distribution. The multinomial represents collaboration
topics among multiple domains, between two specific domains, or
those in single domain. Based on the learned topics, we can con-
struct a topic-centered network (similar to Figure 2(c)). Then the
random walk with restart can be performed on the network to esti-
mate the relatedness scores of users from different domains.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed methods on large pub-

lication datasets of different domains. All data sets and codes are
publicly available3.

4.1 Experimental Setup

Data sets. The data set is extracted from Arnetminer.org [31],
an academic search system, which contains 1,436,990 authors and

3http://arnetminer.org/collaboration
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1,932,442 publications. The data we used in our experiments spans
from 1990 to 2005. We consider the following five sub-domains:

• Data Mining: We use papers of the following data min-
ing conferences: KDD, SDM, ICDM, WSDM and PKDD
as ground truth, which result in a network with 6,282 authors
and 22,862 co-author relationships.

• Medical Informatics: We include the following journals:
Journal of the American Medical Informatics Association,
Journal of Biomedical Informatics, Artificial Intelligence in
Medicine, IEEE Trans. Med. Imaging and IEEE Transac-
tions on Information and Technology in Biomedicine, from
which we obtain a network of 9,150 authors and 31,851 co-
author relationships.

• Theory: We include the following conferences, i.e., STOC,
FOCS and SODA, from which we get 5,449 authors and
27,712 co-author relationships.

• Visualization: We include the following conferences and
journals, CVPR, ICCV, VAST, TVCG, IEEE Visualization
and Information Visualization. The obtained coauthor net-
work is comprised of 5,268 authors and 19,261 co-author re-
lationships.

• Database: We include the following conferences, i.e., SIG-
MOD, VLDB and ICDE. From those conferences, we extract
7,590 authors and 37,592 co-author relationships.

Based on the above five sub domains, we create four cross-
domain test cases: Data Mining to Theory, Medical Informatics to
Database, Medical Informatics to Data Mining, and Visualization
to Data Mining.

Comparison methods. We compare the following methods for
collaboration recommendation:

Content Similarity (Content): It calculates similarity between
authors based on papers published by them. Specifically, we con-
struct feature vector wq and wv′ of words used in papers published
by query author q and target author v′, respectively. Those feature
vectors are normalized by TFIDF [1]. The similarity score is the
Cosine similarity between wq and wv′

Sim(vq, v
′) =

wq · wv′

‖wq‖‖wv′‖ (6)

Collaborative Filtering (CF): It leverages the existing collab-
orations to make the recommendation. The basic idea is that if a
query author q has the same or similar collaborators as a person x
within the same domain, q is then likely to have the same cross-
domain collaborators as x. We employ a memory-based collabo-
rative filtering algorithm [8], in which recommendations are made
for a query user q using the following formula:

CF_score(q, v′) =
∑

x∈V S

I(x, v′)r(q, x) (7)

where r(q, x) is the similarity between authors in the source do-
main, e.g., Cosine similarity based on collaboration connections;
the indicator variable I(x, v′) is 1 if the author x has a cross-
domain collaboration with v′ and 0 otherwise.

Hybrid: It considers a linear combination of the scores obtained
by the Content and the CF methods, specifically,

Hybrid(vq, v
′) = μCF_score(vq, v

′)+(1−μ)Sim(vq, v
′) (8)

where μ is a balance parameter. We empirically set it as 0.5.
Katz: It is the best link predictor in [20]. It sums over all possi-

ble paths between the query user and a candidate user, and then use
the summation score to rank all candidates.

Author Matching: (Cf. §3.1) It makes recommendation by per-
forming the random walk with restart on the collaboration graph.

Topic Matching: (Cf. §3.2) It makes recommendation by com-
bining the extracted topics into random walking algorithm.

CTL: (Cf. §3.3) It is the proposed method, which considers
topic skewness and extracts relevant topics to cross-domain collab-
oration. The relevant topics are then integrated into the random
walk framework for recommendation.4

Evaluation metrics. To quantitatively evaluate the proposed
methods, in each test case, we use historic collaboration data (data
before 2001) for training and the last four years (2001-2005) for
validation. In evaluation, we consider those candidates who already
have cross-domain collaborations and then our task is to predict if
they will maintain the collaborations or expand new cross-domain
collaborations. If the system recommends a cross-domain collab-
oration and later the collaboration has been built, then we say the
system made a correct recommendation; otherwise we say the sys-
tem made a wrong recommendation. Based on this, we evaluate the
recommendation performance in terms of P@10 (Precision for the
top 10 recommended results), P@20, R@100 (Recall for the top
100 results), MAP (Mean Average Precision), and Average Recip-
rocal Hit-Rank (ARHR) [9].

All codes are implemented in C++, and all the experiments are
conducted on an x64 server with E7520 1.87GHz Intel Xeon CPU
and 128G RAM. The operation system is Microsoft Windows Sever
2008 R2 Enterprise. For training the ACT and the CTL models, it
takes about 12 hours and 15 hours respectively on the entire data
set (1,436,990 authors and 1,932,442 publications). Recognizing
the computation complexity of LDA style models, we are currently
looking into developing more efficient computation mechanism to
speed up the process.

4.2 Recommendation Performance Analysis
Table 2 lists the performance of cross-domain collaboration rec-

ommendation by the comparison methods on the four different test
cases. The proposed CTL method clearly outperforms the base-
line methods (+2.2-30% in terms of MAP). Content only considers
the content information, which leads to a bad performance. The
two methods (Hybrid and Topic Matching), combining the content
and the network information, improve the recommendation per-
formance compared to the simple baselines such as Content, CF
and Author Matching. Moreover, Topic Matching considers the
topic information extracted from the two domains, and thus per-
forms better than the Hybrid method adopting a simple combina-
tion. CTL differentiates “collaboration topics” from those irrele-
vant topics and obtains significant improvement over both Hybrid
and Topic Matching.

Cross-domain topics analysis. How many topics are enough
for the cross-domain recommendation? We perform an analysis by
varying the number of cross-domain topics in the proposed CTL
method. Figure 5(a) shows its MAP performance with the num-

4As for the hyperparameters α, αt, and β, following LDA [4], we
empirically take fixed values (i.e., α = αq = 50/T , and β =
0.01). γ and γt are defined to represent our preference for cross-
domain collaborations (i.e., γq = 3.0 and γ = 0.1). We did try
different settings and found that the estimated topic models are not
very sensitive to the hyperparameters.
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Table 2: Recommendation performance by different methods
on the four cross-domain test cases (%). Content− Content
Similarity; CF− Collaborative Filtering; Author− Author Matching;
Topic− Topic Matching.

Cross
domain

ALG P@10 P@20 MAP R@100
ARHR

-10
ARHR

-20

Data
Mining (S)

to
Theory (T)

Content 10.3 10.2 10.9 31.4 4.9 2.1
CF 15.6 13.3 23.1 26.2 4.9 2.8

Hybrid 17.4 19.1 20.0 29.5 5.0 2.4
Author 27.2 22.3 25.7 32.4 10.1 6.4
Topic 28.0 26.0 32.4 33.5 13.4 7.1
Katz 30.4 29.8 31.6 27.4 11.2 5.9
CTL 37.7 36.4 40.6 35.6 14.3 7.5

Medical
Info. (S)

to
Database (T)

Content 10.1 10.9 12.5 45.9 3.6 2.1
CF 18.3 20.2 21.4 47.6 5.3 3.9

Hybrid 25.0 26.5 28.4 59.1 6.4 4.2
Author 26.2 29.6 32.2 54.8 10.5 5.4
Topic 29.4 26.3 34.7 59.3 11.5 5.2
Katz 27.5 28.3 30.7 57.2 10.5 5.0
CTL 32.5 30.0 36.9 59.8 11.4 5.4

Medical
Info. (S)

to
Data

Mining (T)

Content 5.8 5.7 9.5 19.8 1.9 0.9
CF 13.7 17.8 18.9 34.3 2.7 1.3

Hybrid 18.0 19.0 19.8 36.7 3.4 1.3
Author 20.1 23.8 29.3 64.4 5.3 2.1
Topic 26.0 25.0 33.9 48.1 10.7 5.6
Katz 21.2 23.8 32.4 48.1 10.2 4.8
CTL 30.0 24.0 35.6 49.6 12.2 6.0

Visual. (S)
to

Data
Mining (T)

Content 9.6 11.8 13.2 18.9 3.1 1.8
CF 14.0 20.8 26.4 29.4 6.9 4.3

Hybrid 16.0 20.0 27.6 30.1 6.3 4.4
Author 22.0 25.2 27.7 31.1 11.9 6.7
Topic 26.3 25.0 32.3 31.4 13.2 8.8
Katz 23.0 25.1 29.3 30.2 10.4 5.4
CTL 28.3 26.0 32.8 36.3 14.0 9.1

ber of cross-domain topics varied. We see, when the number is
small (< 80), increasing the number often obtains a performance
improvement. The trend becomes stable when the number is up
to 150. This demonstrates the stability of the CTL method with
respect to the number of topics.

Hyperparameter analysis. We use α as the example to ana-
lyze how hyperparameter influences the performance of the CTL
method. Figure 5(b) shows the performance of CTL with the pa-
rameter α varied (all the other hyperparameters fixed and the num-
ber of topics is set as T = 120). We see although the performance
changes when varying the value of α, the largest difference is less
than 0.03 This confirms CTL method is not sensitive to the partic-
ular choice of α.

Restart parameter analysis. We study how the parameter τ influ-
ences the process of random walk with restart. Figure 5(c) plots the
performance of the CTL method on the four test cases with the pa-
rameter τ varied. In general, the recommendation performance is
not sensitive to the restart parameter τ . By a careful investigation,
we find that a small τ makes the random walk diffuse too quickly
thus can hurt the precision, while a large τ limits the diffusion pro-
cess and thus can result in a lower recall.

Convergence analysis. We further investigate the convergence
of the random walk with restart algorithm. Figure 5(d) shows
the convergence analysis of different models on the test case of
Visualization-Data Mining. We see all the three models converge
within 10 iterations and CTL achieved even faster convergence
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Figure 6: Performance on new collaboration prediction of all
algorithms.

(within 5 iterations). This fast convergence on CTL model enable
real time query support that is crucial in the deployed system we
will discuss next.

New Collaboration Prediction The collaboration network is dy-
namic in nature, with collaborative relationships created over time.
In general, there are two types of collaborative behaviors, maintain-
ing existing collaborations and building new collaborations. Can
we predict who will create a new collaboration in the future? This
is a more difficult task. We conduct an experiment to evaluate the
performance of the proposed method for new collaboration predic-
tion. In particular, we still use the publication data before 2001 for
training and the data between 2001-2005 for test, and in the evalua-
tion, we only consider new collaborations in the test data. Figure 6
shows the performance of new collaboration prediction by the six
comparison algorithms. On average, the performance of all algo-
rithms drops a bit, but all algorithms have similar behaviors as that
in Table 2. In particular, it is exciting to see that CTL can still main-
tain about 0.3 in terms of MAP which is significantly higher than
the baseline methods.

4.3 Prototype System
We have developed and deployed a web application for cross-

domain recommendation based on the proposed CTL method5. The
system trained a CTL model offline using all the publication data
(about 1,932,442 publication papers) in Arnetminer.org. When a
user wants to find cross-domain collaborators, he first inputs his
profile (including organization and research interest) or use an ex-
isting author profile via the Arnetminer system, which includes
more than 1 million researcher profiles. Then the user inputs the
target domain (by keywords) in which he wants to find collabo-
rations. The system performs the random walk with restart algo-
rithm (Cf. §3.3) online against the CTL model to rank potential
topics/collaborators in the target domain.

5. RELATED WORK
Collaboration recommendation plays an important role in many

fields and has attracted a lot of research interest. Chen et al. [7]
have developed a system called CollabSeer for discovering poten-
tial collaborators for a given author based on the structure of the
coauthor network and the user’s research interests. This is the
most relevant paper to our work. However, it does not consider
the cross-domain problem. Konstas et al. [17] investigated how
social relationships can help recommendation. They developed a

5http://arnetminer.org/collaborator
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Figure 5: Parameter analysis. (a) Performance of cross-domain topic learning model by varying the number of topics T ; (b) Performance of
cross-domain topic learning (CTL) is stable when varying α parameter; (c) Performance of CTL is stable when varying the restart parameter τ in
the random walk process on the four test cases; (d) Convergence analysis of different models on the test case of Visualization-Data Mining.

track recommendation system by considering both social annota-
tion and friendship inherent in the social graph established among
users, items and tags. Kautz et al. [16] introduced a system called
ReferralWeb which attempts to combine social networks for col-
laborative filtering. There are a large body of research on collabo-
rative filtering. For example [2] introduced a system called Fab by
combining content-based filtering and collaborative filtering. Shi
et al. [26] proposed a large scale machine learning system for rec-
ommending heterogeneous content in social networks and Sculley
et al. [25] presented a method to rank which combines regression
and ranking. Yuan et al. [35] aimed to fuse heterogeneous social
relationships for recommendation using factorization and regular-
ization technologies. Wang and Blei [34] developed an algorithm
to recommend scientific articles to users of an online community by
combining traditional collaborative filtering and probabilistic topic
modeling. However, most existing works only consider the recom-
mendation problem within one single domain, but do not consider
the cross-domain recommendation problem. In addition, we pro-
pose a novel cross-domain topic learning method, which supports
recommending collaboration topics as well.

Our work is also related to expert finding [3, 30, 36] and ex-
pertise matching [23, 33]. Mimno et al. [23] and Tang et al. [33]
studied the problem of paper-reviewer recommendation, a subtask
of expert finding. The proposed algorithms can be leveraged for
collaboration recommendations. However, expert finding and ex-
pertise matching are in nature different from the problem of col-
laboration recommendation. The idea of differentiating irrelevant
topics has been also studied in previous work such as the query-
oriented topic model (qLDA) proposed in [29], which tries to iden-
tify relevant topics to queries in multi-document summarization.

6. CONCLUSION
In this paper, we study the problem of cross-domain collabora-

tion recommendation. We precisely define the problem and present
three models for ranking and recommending potential collabora-
tors. A cross-domain topic modeling approach has been proposed
to learn and differentiate collaboration topics from other topics. Ex-
perimental results in a coauthor network demonstrate the effective-
ness and efficiency of the proposed approach.

As for the future work, it is intriguing to connect cross-domain
collaborative relationships with social theories. For example, how
cross-domain relationships correlate with strong/weak ties [12] and
how such correlation can help spread knowledge from one domain
to another domain. It would be also interesting to apply the pro-
posed method to other networks, e.g., software development.
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8. APPENDIX
According to the generative process, we could integrate out

the multinomial (Bernoulli) distributions θ, θ′, ϑ, λ, φ, because the
model only uses conjugate priors [10]. We use Eq. 4 as the example
to explain its derivation. First we write the joint probability:

P (x, x′, z, z′, s, v, v′|α, γ, γt, β, A)

∝
∫

P (s|λ)P (λ|γ, γt)dλ

∫
P (v|A)P (z|v, s, θ)P (θ|α)dθ

∫
P (v′|A′

)P (z′|v′, s, θ′
)P (θ

′|α)dθ′
∫

P (x|z, φ)P (φ|β)dφ
∫

P ((v, v′)|A)P (z|(v, v′), s, ϑ)P (ϑ|α)dϑ (9)

The conditional of si is obtained by dividing the joint distribu-
tion of all variables by the joint with all variables but si (denoted
by s−i) and canceling factors that do not depend on s−i.

p(si = 0|s−i, z, .) =
P (x, x′, z, z′, s, v, v′|α, γ, γt, β, A)

P (x, x′, z, z′, s−i, v, v′|α, γ, γt, β, A)

=

∫
P (s|λ)P (λ|γ, γt)dλ∫

P (s−i|λ)P (λ|γ, γt)dλ

·
∫
P ((v, v′)|A)P (z|(v, v′), s, ϑ)P (ϑ|α)dϑ∫

P ((v, v′)|A)P (z|(v, v′), s−i, ϑ)P (ϑ|α)dϑ (10)

We now derive the first fraction of Eq. 10. As we assume that si
is generated from a Bernoulli distribution λ whose Beta parameters
are γ, γt, then we can get p(s|λ) =

∏
d λ

nds0
d · (1 − λd)

nds1 ,
where nds0 is the number of times that s = 0 has been sampled
in document d and nds1 represents the number of times that s =

1 has been sampled in d. Because Beta is the conjugate prior of
Bernoulli, we could solve the Bernoulli-Beta integral using Gibbs
sampling. Specifically,

∫
P (s|λ)P (λ|γ, γt)dλ

=
∏
d

1

B(γt, γ)

∫ 1

0

λ
nds0

+γt−1

d (1 − λd)
nds1

+γ−1
dλd

=
∏
d

B(nds0
+ γt, nds1

+ γ)

B(γt, γ)

=
∏
d

Γ(nds0
+ γt)Γ(nds1

+ γ)Γ(γt + γ)

Γ(nds0
+ nds1

+ γt + γ)
(11)

To yield the first fraction of Eq. 10, we apply the above equation
twice and obtain the following equation:

∫
P (s|λ)P (λ|γ, γt)dλ∫

P (s−i|λ)P (λ|γ, γt)dλ
=

∏
d

Γ(nds0
+γt)Γ(nds1

+γ)Γ(γt+γ)

Γ(nds0
+nds1

+γt+γ)

∏
d

Γ(n
−di
ds0

+γt)Γ(n
−di
ds1

+γ)Γ(γt+γ)

Γ(n
−di
ds0

+n
−di
ds1

+γt+γ)

=
n−di
ds0

+ γt

n−di
ds0

+ n−di
ds1

+ γt + γ
(12)

Here, we use the identity Γ(x + 1) = xΓ(x); the super-
script −di denotes a quantity, excluding the current instance. The
second fraction of Eq. 10 can be derived analogously. Specifi-
cally, as P ((v, v′)|A) is a uniform distribution, P (z|(v, v′, s, ϑ)
and P (ϑ|α) are conjugate pair of Multinomial-Dirichlet, we can
obtain [14]:

∫
P ((v, v′)|A)P (z|(v, v′), s, ϑ)P (ϑ|α)dϑ

=
∏
d

1

σ(Ad)
· 1

Δ(α)

∏
z

ϑ
nvz+n

v′z+n
vv′z+α−1

vv′z dϑvv′

=
∏
d

1

σ(Ad)

Δ( 
nd + α)

Δ(α)
,

with 
nd = {nvz + nv′z + nvv′z}T
z=1 (13)

where σ(Ad) is the total number of cross-domain user pairs gener-
ated from authors of document d (for a specific document, the num-

ber will be a constant); Δ(α) = Γ(α)T

Γ(Tα)
; nvv′z denotes the number

of times that topic z has been sampled by user pair (v, v′); nvz and
nv′z are two numbers obtained when combining the two distribu-
tions θv and θv′ ; please note that though we write it as the sum of
the two numbers, in practice, when sampling a specific topic, we
will only consider one of them. This is because, for example, if
a topic z is from the source domain, the number nv′z will be 0.
Accordingly, the second fraction of Eq. 10 can be written as:

∫
P ((v, v′)|A)P (z|(v, v′), s, ϑ)P (ϑ|α)dϑ∫

P ((v, v′)|A)P (z|(v, v′), s−i, ϑ)P (ϑ|α)dϑ

=

∏
d

1
σ(Ad)

Δ( �nd+α)

Δ(α)∏
d

1
σ(Ad)

Δ(�nd,¬i+α)

Δ(α)

=

Γ(n
vv′z+nvz+n

v′z+α)

Γ(
∑

z′ (nvv′z′+n
vz′+n

v′z′+α))

Γ(n
vv′z+nvz+n

v′z+α−1)

Γ([
∑

z′ (n
−di
vv′z′+n

vz′+n
v′z′+α)]−1)

=
n−di

vv′zdi
+ (nvzdi

+ nv′zdi ) + α

∑
z(n

−di

vv′z + (nvzdi
+ nv′zdi ) + α)

(14)

Finally, by combining Eqs. 12 and 14, we obtain Eq. 4.
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