
Confluence: Conformity Influence in Large Social
Networks

Jie Tang
Computer Science

Tsinghua University, China
Beijing 100084, China

jietang@tsinghua.edu.cn

Sen Wu
Computer Science

Tsinghua University, China
Beijing 100084, China

ronaldosen@gmail.com

Jimeng Sun
IBM T. J. Watson Research

Center
USA

jimeng@us.ibm.com

ABSTRACT

Conformity is a type of social influence involving a change in opin-
ion or behavior in order to fit in with a group. Employing several
social networks as the source for our experimental data, we study
how the effect of conformity plays a role in changing users’ online
behavior. We formally define several major types of conformity in
individual, peer, and group levels. We propose Confluence model
to formalize the effects of social conformity into a probabilistic
model. Confluence can distinguish and quantify the effects of the
different types of conformities. To scale up to large social net-
works, we propose a distributed learning method that can construct
the Confluence model efficiently with near-linear speedup.

Our experimental results on four different types of large so-
cial networks, i.e., Flickr, Gowalla, Weibo and Co-Author, ver-
ify the existence of the conformity phenomena. Leveraging the
conformity information, Confluence can accurately predict actions
of users. Our experiments show that Confluence significantly im-
proves the prediction accuracy by up to 5-10% compared with sev-
eral alternative methods.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Miscellaneous; H.3.3
[Information Search and Retrieval]: Text Mining

General Terms

Algorithms, Experimentation

Keywords

Conformity; Social influence; Social network

1. INTRODUCTION
Conformity is the act of matching attitudes, beliefs, and behav-

iors to group norms [8]. The phenomenon of conformity could
occur in small groups or the whole society, as a resultant of peer in-
fluence or group pressure. Conformity can have either good or bad
effect depending on the situation. For example, it helps form and
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maintain the social norms, and helps prevent acts that are percep-
tually dangerous. Conformity can be influenced by various factors
such as individual status, peer influence and group pressure. There-
fore there is a clear need for quantitative methods for measuring
conformity from different aspects, so as to understand the complex
dynamics in social networks.

Conformity was first studied by psychologists through inter-
views with small groups of participants [17]. In economics, Bern-
heim [3] found that sometimes people are willing to conform sim-
ply because they recognize that departure from the social norm may
impair their status. Bernheim further proposed a theory of social
conformity and presented a model to describe the conformity pro-
cess. However, due to the lack of real data, he only studied the
model from the theoretical aspect. With the rapid proliferation of
online social networks such as Facebook, Twitter, and Flickr, it
becomes feasible and also very necessary to conduct an in-depth
investigation of the conformity problem on real large social net-
works. In practice, the effect of conformity has been also observed
in online social networks. For example, Bond et al. [4] reported
results from a randomized controlled trial of political mobilization
messages delivered to 61 million Facebook users. They found that
when one is aware that their friends have made the political votes,
their likelihood to vote will significantly increase. Bakshy et al. [2]
also found that when their friends click an ad, they will be more
likely to click the same ad.

From a broader viewpoint, conformity can be seen as a special
type of social influence. There are a bulk of studies on social in-
fluence analysis. These studies can be roughly classified into three
categories: influence testing [1, 9, 20], influence quantification [12,
13, 23, 32], and influence maximization models [6, 18]. However,
most of the works focus on qualitative study of social influence.
With an exception, Tang et al. [32] presented a Topical Affinity
Propagation (TAP) approach to quantify the topic-level social in-
fluence in large networks. However, they do not distinguish the
effect of peer influence and group conformity.

There are several challenges for the conformity influence analy-
sis. First, how to formally define and differentiate different types of
conformities? Unlike peer influence, which mainly considers how
two connected friends influence each other, conformity occurs in
different situations and exists with different forms. Second, how to
construct a computational model to learn the different conformity
factors? Third, how to validate the proposed model in real large
networks.

To address the above challenges, we formally define the problem
of conformity influence analysis in social networks and categorize
conformity into individual conformity, peer conformity, and group
conformity. We propose an Confluence method to formalize the ef-
fects of social conformity into a probabilistic factor graph model.
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Figure 1: Action prediction accuracy (AUC) of different meth-

ods by considering the effect of conformity in four networks.

The Confluence method can distinguish and quantify the effect of
the different types of conformities. We test the proposed method on
four social networks, i.e., Flickr, Gowalla, Weibo1, and Co-Author.
Our experimental analysis verifies the existence of conformity in all
the four social networks. We further apply the Confluence method
to model and predict users’ online behavior. To scale up to large
social networks, we propose a distributed learning version of Con-
fluence that can leverage parallel computing to significantly reduce
the computational time to nearly linear speedup (∼ 9× with 16
computer cores). Figure 1 shows the prediction accuracy in terms
of Area Under Curve (AUC) on the four networks. It can be clearly
seen that by incorporating the conformity factors, the prediction
performance can be significantly improved up to 5-10% compared
to various baseline methods.

Organization Section 2 formulates the problem; Section 3 ex-
plains the proposed model and describes the algorithm for learning
the model; Section 4 presents the experimental results; finally, Sec-
tion 5 discusses related work and Section 6 concludes the work.

2. PROBLEM DEFINITION
Let G = (V,E) denote the social network, where V is a set of

|V | = N users and E ⊂ V × V is a set of relationships between
users. A user’s behavior is time dependent. Specifically, we use the
triple (a, vi, t) to represent user vi performed action a ∈ A at time
t, where A is the set of possible actions. For example, on Flickr,
the action can be defined as adding comment to a specific picture.
We further assume that users in a network form m groups and use
anN×mmatrix C to represent users’ group memberships. Specif-
ically, each binary-valued element cik ∈ C represents whether user
vi belongs to the kth group. We use Ck to represent the kth group.
The group can be formed through user participation. For example,
users on Flickr can build and join different groups. If a network
does not have the explicit group information, we use a community
detection algorithm (e.g., [27]) to automatically detect groups from
the network structure. In addition, each user vi is associated with a

1Weibo.com, the most popular microblogging service in China
with more than 400 million users.

Table 1: Notations.
SYMBOL DESCRIPTION

V a set of |V | = N users

E a set of relationships between users

C a N ×m matrix to represent users’ group memberships

X a N × d matrix to represent users’ attributes

A the action history of all users in the network

cij ∈ C a binary-valued variable to represent whether user vi be-
longs to group Ck

xij ∈ X the jth attribute of user vi
(a, vi, t) ∈ A a triple to represent user vi performed the action a at

time t

set of d numeric attributes xi. The attributes can be defined based
on users’ profile (e.g., interest or posted tweets). Given this, we can
define the input of our problem as follows. (Table 1 summarizes the
notations used throughout this paper.)

Input: The input of our problem consists of two components,
i.e., an attribute augmented network G = (V,E,C,X) and action
history A = {(a, vi, t)}a,i,t, where X denotes an N × d attribute
matrix with an element xij indicating the jth attribute of user vi.

Our goal is to study how a user’s behavior conforms to her peer
friends and the communities (groups) that she belongs to. In this
work, we define three levels of conformities respectively from the
aspect of individual, peer relationship, and group. The individual
conformity represents how easily user v’s behavior conforms to her
friends. Formally, we have

Definition 1. Individual conformity: The individual confor-
mity is defined as the ratio between the number of actions for which
we have evidence that the user v conforms to one of her friends v′,
over the total number of actions performed by user v. More pre-
cisely we define:

icf(v) =
|(a, v, t) ∈ Av|∃(a, v′, t′) : evv′ ∈ E ∧ ǫ ≥ t− t′ ≥ 0|

|Av|

where Av ⊂ A denotes the action history of user v and ǫ is a
threshold of difference between the time when the two users v and
v′ performed the same action a, and | · | denotes the cardinality over
a set.

We also define peer conformity to represent how likely the user
v’s behavior is influenced by one particular friend v′.

Definition 2. Peer conformity: The peer conformity is defined
as the ratio between the number of actions for which we have evi-
dence that the user v conforms to her friend v′, over the total num-
ber of actions performed by the friend v′, that is:

pcf(v, v′) =
|(a, v′, t′) ∈ Av′ |∃(a, v, t) : evv′ ∈ E ∧ ǫ ≥ t− t′ ≥ 0|

|Av′ |

where Av′ ⊂ A denotes the action history of user v′.

We further define group conformity to represent the conformity
of user v’s behavior to groups that the user belongs to. In a group,
there might be a large number of actions performed by its users.
However many actions may be performed by only one single user.
To begin with, we first define the τ -group action as the action that
was performed by more than a percentage τ of all users in the com-
munity (group) Ck. Given this, we define the group conformity as
follows:



Definition 3. Group conformity: The group conformity is then
defined as the ratio between the number of actions for which we
have evidence that the user v conforms to the group, over the total
number of τ -group actions performed by users in the group Ck,

gcfτ (v, Cvk) =
|(a, v′, t′) ∈ Aτ

Ck
|∃(a, v, t) : I[cik] ∧ ǫ ≥ t − t′ ≥ 0|

|Aτ
Ck

|

where Aτ
Ck

⊂ A denotes actions performed by more than a per-
centage τ of all users in the group Ck; I[cik] is an indicator func-
tion, which returns true if the value of cik is 1 and false otherwise.

Please note that a user may be involved into more than one
groups, thus has different conformity degrees in the different
groups. The above definitions quantify the conformity from differ-
ent levels (individual, peer relationship, and group). Further, given
the action history A = {(a, vi, t)}a,i,t, we use variable yi = a to
indicate whether user vi performs the an action a and use the col-
lection of variables Y t = {yi}1,··· ,N to represent the action labels
of all users at time t. Next, we define the problem of conformity
influence analysis.

Problem: Given 1) an attribute augmented network G =
(V,E,C,X) and 2) action history A = {(a, vi, t)}a,i,t, how to
quantify the importance of the different types of conformities for
each user? This is formalized as finding a model parameters θ⋆ of
different conformities to maximize the following conditional prob-
ability, i.e., θ⋆ = argmaxθ Pθ(Y

t|G,A). The second problem is
how to incorporate the defined conformities and the learned model
parameters into a unified model to predict users’ future action in
the social network, i.e., Y ⋆ = argmaxY t+1 Pθ⋆(Y

t+1|G,A).

3. CONFLUENCE MODEL FRAMEWORK
Our goal is to design a unified model to capture users’ action dy-

namics and model conformities from different levels. We propose
Confluence, a conformity-aware factor graph model. To handle real
large networks, we develop a distributed model learning algorithm.

3.1 Conformity-aware Factor Graph Model
In the Confluence model, we attempt to maximize the con-

ditional probability of user actions given their corresponding at-
tributes and the input network, i.e., Pθ(Y

t|G,A). More precisely,
for each action (a, vi, t) ∈ A, we construct a training instance.
Then learning the model becomes how to find a configuration of
parameters θ to maximize the joint conditional probability for all
users’ actions. When applying the learned model parameters to
predict users’ future actions, it tries to find a setting of action la-
bels Y t+1 at time t + 1 to maximize the conditional probability
Pθ(Y

t+1|G,A) based on the learned parameters.
Directly maximizing the conditional probability P (Y |G,A) is

often intractable. Factor graph provides a method to factorize the
“global” probability as a product of “local” factor functions, each
of which depends on a subset of the variables in the graph [19].
In the proposed Confluence model, we try to capture two kinds
of information, i.e., the attributes associated with each user and
three types of conformities we defined in § 2. Specifically, we use
three factor functions to represent the individual conformity, peer
conformity, and group conformity, respectively.

• Individual conformity factor: g(yi, icf(vi)) represents the
correlation between user vi’s action and his individual con-
formity.

• Peer conformity factor: g(yi, y
′
j , pcf(vi, vj)) represents

the correlation between user vi’s action and his peer con-
formity to vj .

g(v1, icf (v1))

Users

Confluence model

v2

v3 y1=a

Input Network

v4 v5

v7

Group 1: C1

Group 2:

C2

y3
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y7
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y6

v3
v1

v2
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v7
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v6

g(y1, y 3, pcf (v1, v3))

g(y1, gcf (v1, C1))

v6

v1

Group 3: C3

Figure 2: Graphical representation of the Confluence model.

yi indicates the corresponding action of user vi; g(yi, icf(vi)),

g(yi, y
′
j , pcf(vi, vj)), and g(yi, gcf

τ (vi, Ck)) respectively represent

the individual conformity factor, peer conformity factor, and group

conformity factor.

• Group conformity factor: g(yi, gcf
τ (vi, Ck)) represents

the correlation between user vi’s action and his conformity
to the group Ck.

In the above definitions, without ambiguity, we omit the time
stamp t (e.g., simplifying yti to yi) and use the superscript ′ (e.g.,

simplifying yt
′

i to y′i) to indicate a variable at time stamp t′.
The different factors quantify how different levels of conformi-

ties finally determine user v’s actions. According to the defined cor-
relations, we can construct the graphical structure in the Confluence
model. An example is illustrated in Figure 2. In the input network,
user v1 belongs to three groups C1, C2, and C3, thus in the con-
structed factor graph, its corresponding latent variable y1 is con-
nected to three group conformity factors (e.g., g(y1, gcf(v1, C1))).
User v1 has four friends in the input network, thus four peer confor-
mity factors in the factor graph model. We also define an individual
conformity factor for each user. Besides the conformity factors, we
use factor function f(yi, xij) to capture the correlation between
the user’s attribute xij and user’s action. By integrating all the fac-
tor functions together, and according to the Hammersley-Clifford
theorem [15] we can obtain the following log-likelihood objective
function,

O(θ) = logPθ(Y |G,A)

=
N
∑

i=1

[

d
∑

j=1

αjf(yi, xij) + βig(yi, icf(vi))

]

+
∑

eij∈E

I[y′]γijg(yi, y
′
j , pcf(vi, vj))

+

N
∑

i=1

m
∑

k=1

I[cik]µikg(yi, gcf(vi, Ck))− logZ

(1)

where I[y′j ] is an indicator function to indicate whether user vj per-
formed the same action immediately before user vi, more precisely,
[∃(a, vj , t

′) ∧ ǫ ≥ t− t′ ≥ 0] and I[cik] indicates whether user vi
belongs to the group Ck; α, β, γ, and µ are respectively weights
of the different factor functions; θ = ({α}, {β}, {γ}, {µ}) is a pa-
rameter configuration estimated from the training data; and Z is a



normalization factor to ensure that the distribution is normalized so
that the sum of the probabilities equals to 1.

In practice, choosing a good threshold ǫ for defining the confor-
mity factors is challenging. Instead, we use a decay factor λ ≥ 1
in each conformity function. A large λ means a slow-decay effect.
Accordingly, the peer conformity factor is defined as:

g(yi, y
′
j , pcf(vi, vj)) = (

1

2
)
t−t′

λ pcf(vi, vj) (2)

where t′ corresponds to the latest past time when vj performed the
same action as vi in the training data set. The decay factor decays
the peer conformity exponentially over time, with the half-life, λ,
serving as a tunable parameter. The basic idea is that friend’s recent
actions have higher influence on one’s action. The group confor-
mity factor is defined as:

g(yi, gcf
τ (vi, Ck)) = (

1

2
)
t−t′

λ gcf
τ (vi, Ck) (3)

where t′ represents the latest past time when some user in group
Ck performed the same action as user vi in the training data set;
and τ is empirically set as 0.25. Please note that a user may belong
to multiple groups and accordingly we could incorporate multiple
different group community factors into the objective function. Sim-
ilarly, the individual conformity factor is defined as:

g(yi, icf(vi)) =

∑|Avi
|

k=1 ( 1
2
)
t−t′

λ I[y′j ∧ eij ∈ E]

|Av|
(4)

where I[y′j ∧ eij ∈ E] represents whether some friend vj of vi
performed the same action ak ∈ Avi immediately before user vi.

Implementation note. In our experiments, we empirically set the
parameters within the factor functions as follows: λ = 2, ǫ = 1,
and τ = 0.25. We did try different parameter values. For example,
for λ, we fixed all the other parameters and varied λ from 1 to 10
with an interval 1. We varied ǫ between [1, 5]. For τ , we varied
between [0.0, 1.0] with an interval 0.05. We tested the model accu-
racy (in terms of F1-score) for each parameter value and found that
the performance was relatively stable across different settings. As
for the community detection, we tried different algorithms such as
local spectral partitioning (LSP), METIS, and Newman. We found
that the prediction performance is also not very sensitive to the
choice of the community detection algorithm. Finally, we use the
Newman algorithm (e.g., [27]) due to its wide adoption.

3.2 Feature Definition
Besides the conformity features, we also define other features for

modeling users’ actions in the networks. The first type of features
are based on users’ attributes including the number of friends and
users’ interests. More specifically, to make the defined features as
general as possible, we simply consider four attribute features, i.e.,
the number of friends, the number of new friends in the recent three
time stamps, the number of total groups that the user joined, and
the number of groups the user joined in recent three time stamps.
The proposed model is also general and can incorporate other social
theory-based features. Thus, the second type of features are defined
based on some other social theories. Specifically,

Opinion leader: the feature is defined to represent whether the
user is an opinion leader or not. We use the InfluenceRank [29],
a PageRank-like algorithm, to rank and select opinion leaders in a
network.

Input: network G, action history A, and learning rate η;
Output: learned parameters θ = ({α}, {β}, {γ}, {µ});

Initialize α, β, γ, µ;
Construct the graphical structure G in the Confluence model;
Partition the graph G into M subgraphs [G1, · · · , GM ];
repeat

%Distribute the parameter to calculate local belief ;
Master broadcasts θ to all Slaves;
for l = 1 to M do

Each Slave calculates local belief for each marginal
probability according to Eqs. 6 and 7 on subgraph Gl;
Slave send back the obtained local belief;

end

%Calculate the marginals and update all parameters ;
Master calculates the marginal according to Eq. 8;
Master calculates the gradient for each parameter (e.g., by Eq. 5);
Master updates all parameters, e.g. for αj ,

αnew
j = αold

j + η
O(θ)

αj

until convergence;

Algorithm 1: Distributed model learning.

Structure hole: the feature is defined as whether the user is a
structural hole spanner2. We use the algorithm proposed in [24] to
detect whether a user spans structural holes.

The above two features are defined as node-specific features and
are recorded in the f(yi, xij), except that here xij is replaced by
the status of the user. In addition, we also define another two cor-
relation features.

Social ties: a (binary) feature is defined to represent whether a
tie between two users is a strong tie or weak tie [14]. Moreover, we
quantify the tie strength according to the communication frequency
(e.g., message sent) between users. Then, a new (real-valued) fea-
tures is defined to represent the number of common neighbors be-
tween two users.

Social balance: social balance theory [11] suggests that people
in a social network tend to form balanced (triad) structures (like
“my friend’s friend is also my friend”). For a undirected network,
there are four types of (un)balanced triads. A binary feature is de-
fined for each of the triad structure. The similar feature definition
was also used in [31].

These two correlation features are incorporated into our
model in a similar way as that of the peer conformity factor
g(yi, y

′
j , pcf(vi, vj)).

3.3 Distributed Model Learning
Learning the Confluence model is to find a configuration for the

free parameters θ = ({α}, {β}, {γ}, {µ}) that maximizes the log-
likelihood objective function O(θ). As real social networks may
contain thousands or millions of nodes, we have developed a dis-
tributed learning algorithm to scale up our model to handle large
networks. The distributed learning algorithm was developed based
on MPI (Message Passing Interface). In general, the model learn-
ing algorithm can be viewed as two steps: 1) compute the gradient
for each parameter; 2) optimize all parameters with the gradient
descents. The most expensive part is the first step of calculating the
gradient. Thus we develop a distributed algorithm to speed up the
first step and perform the second step on a single (master) machine.

2Roughly speaking, a person is said to span a structural hole in a
social network if he or she is linked to people in parts of the network
that are otherwise not well connected to one another [5].



We first introduce how we calculate the gradient for each param-
eter. As the network structure in the social network can be arbitrary
(may contain cycles), it is intractable to obtain exact solution of the
objective function using methods such as Junction Tree [34]. We
use Loopy Belief Propagation (LBP) [26] to approximate the so-
lution. Specifically, we first approximate the marginal distribution
Pθ(yi|.) using LBP. With the marginal probabilities, the gradient
can be obtained by summing over all factor functions. Theoret-
ically, the LBP algorithm does not guarantee a convergence and
may result in local maximum, but in practice its performance is
good. We empirically compare the effectiveness and efficiency of
the algorithm in Section 4. After obtained the marginal distribution
Pθ(yi|.), we use a gradient descent method (or a Newton-Raphson
method) to solve the objective function (Eq. 1). We use α as the
example to explain how we learn the parameters. Specifically, we
first write the gradient of each unknown parameter α with regard to
the objective function:

O(θ)

αj

= E[f(yi, xij)]− EP (yi|G,A)[f(yi, xij)] (5)

where E[f(yi, xij)] is the expectation of the local factor func-
tion f(yi, xij) given the data distribution in the input network and
EP (yi|G,A)[g(yi, xij)] represents the expectation under the distri-
bution learned by the model, i.e., P (yi|G,A). Similar gradients
can be derived for parameter βi, γij , and µik .

Now we explain how we use distributed learning to approxi-
mate the marginal probability. We use a master-slave architec-
ture, i.e., one master machine is responsible for optimizing param-
eters, and the other slave machines are responsible for calculating
the marginal probabilities. At the beginning of the algorithm, the
graphical model of Confluence is partitioned into M roughly equal
subgraphs, where M is the number of slave processors. The par-
tition can be done by any graph cut software. After the partition,
the subgraphs are then distributed over slave processors. Then each
slave processor calculates the “local” belief (the marginal probabil-
ity) on the subgraph Gl according to the following equations (again
we use P (yi|G,A) as the example in the explanation):

m
l
ij(yi) = σ

∑

yi

ψ
l
ij(yi, yj)ψ

l
i(yi)

∏

k∈NB(i)\j

m
l
ki(yi) (6)

b
l
i(yi) = ψ

l
i(yi)

∏

k∈NB(i)

m
l
ki(yi) (7)

P (yi|.) = σ

M
∑

l=1

b
l
i(yi) (8)

where σ denotes a normalization constant; ml
ij(yi) is the “belief”

propagated from node yj to node yi; NB(i)\j denotes all nodes
neighboring node yi in the subgraph Gl, except yj ; ψl

i(yi) denotes
all defined factor functions related to yi in the subgraph Gl and is
calculated by ψl

i(yi) = exp(
∑d

k=1 f(yi, xik)+βig(yi, icf(vi))),

and ψl
i(yi, yj) denotes all correlation factor functions related to yi

in the subgraph; notation bli(yi) denotes the unnormalized “local”
belief collected from each subgraph, and finally by combining them
together we obtain the marginal probability P (yi|.).

However, inevitably there will be some correlation factors de-
fined over nodes that are partitioned into different subgraphs. These
correlation factors cannot be calculated due to the high communi-
cation cost. Simply eliminating those correlation factors may hurt
the learning performance. To alleviate this problem, we present
a virtual node based method. In particular, suppose three nodes
(y1, y2, y3) in the Confluence model are associated with a group

conformity factor g(.). If the partition assigns two nodes (e.g., y1
and y2) into one subgraph G1 and the rest one (i.e., y3) into another
subgraph G2, then we create a virtual node in the first subgraph G1

so that the group conformity factor can be still calculated in the sub-
graph. For the virtual node, we do not calculate the local attribute
factors f(.). The distributed learning algorithm is summarized in
Algorithm 1.

Model inference. The learned model parameters θ can be used to
infer users’ future actions. In particular, given the network G and
the action history A, we aim to predict users action labels Y t+1 at
time t+1. This can be done by performing the model inference on
the network to maximize the conditional probability, i.e.,

Y
⋆ = arg max

Y t+1
Pθ(Y

t+1|G,A) (9)

Again, we use the distributed loopy belief propagation algorithm
to compute the marginal probability Pθ(y

t+1
i |.) and then predict

the action of each user at time t + 1 as the label that has the
largest marginal probability. For each user, we define the individ-
ual conformity factor according to the estimated individual confor-
mity from the training data. For defining the peer conformity factor
g(yi, y

′
j , pcf(vi, vj)) between vi and vj , we first find the latest past

time t′ when vj performed the corresponding action y′j , and calcu-
late the factor according to Eq. 2. The group conformity factor can
be similarly defined.

4. EXPERIMENTAL RESULTS
We conduct various experiments to evaluate the Confluence

method. The datasets and codes are publicly available.3

4.1 Experiment Setup

Data sets. We evaluate the proposed method on four different
genres of networks: Flickr, Gowalla, Weibo, and Co-Author. Table
2 lists statistics of the four networks.

Flickr is a photo sharing network. Users on the site can share
photos and add comments to other photos. Flickr users can also
create and join different groups. The data set spans the period from
Apr. 1st, 2012 to Jun. 16th, 2012. We define the action as adding
a comment to a specific photo. Thus the action space includes all
photos on Flickr. To avoid the sparsity problem, we remove those
photos with less than 5 comments. This results in 144,627 unique
actions. We try to study how users’ commenting actions conform
to the other users in the network.

Gowalla is a location-based social network, where users share
their locations by checking-in. The data was from [7] and all check-
ins of these users over the period of Jul. 10th, 2010 - Jul. 29th,
2010. The action in this data set is defined as whether a user checks
in some location (indicated by hashtag or location ID). Thus the
dimension of the action space is the number of available locations.
We also remove those locations with less than five check-ins and
finally obtain 218,811 unique actions. Our goal is to study whether
the users will conform to their friends’ check-in behavior.

Weibo is the most popular microblogging service in China. We
collected a complete network between 1,700,000 users and all the
tweets posted by those users between Sep. 28th, 2012 and Oct.
29th, 2012. The action is defined as whether a user posts a message
on a specific topic (indicated by hashtag). We choose the ten most
popular topics in 2012 and study how users conform to each other
in the network on discussing those topics. We aim to study how
users conform to each other on discussing those topics.

3http://arnetminer.org/conformity/



Table 2: Statistics of the four networks.

Dataset Flickr Gowalla Weibo Co-Author

#nodes 1,991,509 196,591 1,776,950 737,690

#edges 208,118,719 950,327 308,489,739 2,416,472

#groups 460,888 N/A N/A 60

#actions 3,531,801 6,442,890 6,761,186 1,974,466

Co-Author is a network of authors. The data set, crawled
by Arnetminer.org [33], is comprised of 737,690 CS authors and
2,416,472 co-authorships over 1975 - 2012. Based on the publica-
tion venues, authors are categorized into different domains such as
Data Mining, Artificial Intelligence, Computer Graphics, etc.4 The
action is defined as whether an author will publish a paper in a spe-
cific domain. Thus, in total we have 200 unique actions. Our goal
is to study how an author conforms to the other authors on choosing
the publication venue.

Evaluation metrics. To quantitatively evaluate the proposed
model, we consider the following performance metrics:

• Prediction accuracy. We apply the learned model for action
prediction and evaluate its performance in terms of Precision,
Recall, F1-Measure, and Area Under Curve (AUC).

• Scalability performance. We evaluate the computational
time as the efficiency metric.

• Qualitative case study. We use a case study as the anecdo-
tal evidence to further demonstrate the effectiveness of the
proposed model.

All codes are implemented in C++ and JAVA, and all the evalua-
tions are performed on an x64 machine with E7520 1.87GHz Intel
Xeon CPU (with 16 cores) and 192GB RAM. The operation system
is Microsoft Windows Server 2008 R2 Enterprise. The proposed
distributed learning algorithm has a good convergence property. On
average, it converges within 100 iterations.

Comparison methods. Given the input network G and the action
history A, we can construct a training data set {(xi, yi)}i=1,··· ,n,
where n = |A|; xi is the feature vector associated with user vi
and yi = a indicates whether user vi performs the corresponding
action a. In this way, we can use existing methods such as Sup-
port Vector Machines (SVMs) or Logistic Regression (LR) to train
a classification model and then apply the trained model to predict
users’ future actions. The difference from our proposed Confluence
model is that the classification model does not consider the corre-
lation between users’ actions. We also compare with Conditional
Random Fields (CRFs) [21].

SVM: it uses all defined features associated with each user to
train a classification model and then apply it to predict users’ ac-
tions in the test data. For SVM, we use SVM-light.5

LR: it uses logistic regression (LR) to train the classification
model with the same features as those in the SVM method. We also
compare with the results of Naive Bayes (NB) and Gaussian Radial
Basis Function Neural Network (RBF). For all the three methods,
we employ Weka.6

CRF: it is a graphical model based on Conditional Random Field
(CRF). Comparing with CRFs, the factor graph model provides a

4Refer to http://arnetminer.org/topic-browser for a list of domains.
5http://svmlight.joachims.org/
6http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3: Factor contribution analysis. Confluencebase stands

for training a Confluence model with only the basic features.

Confluencebase+SB stands for Confluencebase with social balance fea-

tures. Confluencebase+SH stands for Confluencebase with struc-

ture hole features. Confluencebase+OL stands for Confluencebase

with opinion leader features. Confluencebase+STWT stands for

Confluencebase with strong tie/weak tie features. Confluencebase+CF

stands for Confluencebase with conformity features.

more explicit explanation for the factorization of the underlying
probability distribution [19]. In addition, it is not easy to incor-
porate the group conformity factors into the CRF model, as users’
group memberships could be arbitrary and one user can belong to
multiple groups. Thus in the CRF method, we use attribute-based
features, the social-based features, and individual conformity fea-
tures, but do not use the group conformity features. For CRF, we
use Mallet [25].

In all the comparison methods, we try to use the same features.
The attribute based features are used in all the methods. The so-
cial features defined on social ties and social balance are used in
CRF and Confluence only, as SVM and LR cannot capture the cor-
relations. As for the conformity features, individual conformity is
defined for each user, and is used in all methods; peer conformity is
defined for peer friends and is used in CRF and Confluence; group
conformity is defined for groups and is used only in Confluence.

4.2 Prediction Performance Analysis
On all the four data sets, we use the historic users’ actions as the

training data in different methods and use the learned model to pre-
dict users’ action in the next time stamp. Specifically on Flickr each
week is a time stamp (which results in 11 time stamps in total), on
Gowalla and Weibo each day a time stamp (which result in 20 and
32 time stamps respectively), and on Co-Author each year is a time
stamp (which results in 38 time stamps). We perform the prediction
for each time stamp and finally report the average performance.

Prediction performance. Table 3 lists the action predic-
tion performance of the different methods on the four data sets.
Our method Confluence consistently achieves better performance
than the comparison methods. In terms of F1-score, Confluence
achieves a 1-17% improvement compared with the SVM, LR, NB,
and RBF methods that do not consider the correlation features.
CRF also considers some correlation features (such as social tie
and social balance based features), thus improves the prediction
performance. However it cannot incorporate the group conformity
feature, thus still underperforms our method by 0.5-10.5% in terms
of F1-score. We produced sign tests for each result, which con-
firms that all the improvements of our proposed models over the
five methods are statistically significant (p≪ 0.01).

Factor contribution analysis. In the Confluence model, we de-
fine basic features based on the user-associated attributes, and five



Table 3: Average prediction performance of different methods on the four data sets. The number enclosed in the parenthesis is the

standard deviation.
Data Method Precision Recall F1-Measure AUC

Flickr

SVM 0.5921 (±0.0036) 0.5905 (±0.0031) 0.5802 (±0.0012) 0.6473 (±0.0004)
LR 0.6010 (±0.0052) 0.5900 (±0.0057) 0.5770 (±0.0018) 0.6510 (±0.0008)
NB 0.6170 (±0.0071) 0.6040 (±0.0083) 0.5920 (±0.0031) 0.6520 (±0.0019)

RBF 0.6250 (±0.0039) 0.5960 (±0.0010) 0.5720 (±0.0024) 0.6700 (±0.0010)
CRF 0.5474 (±0.0030) 0.8002 (±0.0009) 0.6239 (±0.0016) 0.6722 (±0.0010)

Confluence 0.5472 (±0.0025) 0.7770(±0.0010) 0.6342 (±0.0010) 0.7383 (±0.0006)

Gowalla

SVM 0.9290 (±0.0212) 0.9310 (±0.0121) 0.9295 (±0.0105) 0.9280 (±0.0042)
LR 0.9320 (±0.0234) 0.9290 (±0.0234) 0.9310 (±0.0155) 0.9500 (±0.0054)
NB 0.9310 (±0.0197) 0.9290 (±0.0335) 0.9300 (±0.0223) 0.9520 (±0.0030)

RBF 0.9320 (±0.0254) 0.9280 (±0.0284) 0.9300 (±0.0182) 0.9540 (±0.0022)
CRF 0.9330 (±0.0100) 0.9320 (±0.0291) 0.9330 (±0.0164) 0.9610 (±0.0019)

Confluence 0.9372 (±0.0097) 0.9333 (±0.0173) 0.9352 (±0.0101) 0.9644 (±0.0140)

Weibo

SVM 0.5060 (±0.0381) 0.5060 (±0.0181) 0.5060 (±0.0157) 0.5070 (±0.0053)
LR 0.5190 (±0.0461) 0.6450 (±0.0104) 0.5750 (±0.0281) 0.5390 (±0.0133)
NB 0.5120 (±0.0296) 0.6700 (±0.0085) 0.5810 (±0.0165) 0.5390 (±0.0132)

RBF 0.5240 (±0.0248) 0.5690 (±0.0098) 0.5460 (±0.0159) 0.5450 (±0.0103)
CRF 0.5150 (±0.0353) 0.6310 (±0.0121) 0.5720 (±0.0209) 0.6320 (±0.0139)

Confluence 0.5185 (±0.0296) 0.9967 (±0.0085) 0.6816 (±0.0156) 0.7572 (±0.0077)

Co-Author

SVM 0.7672 (±0.0338) 0.8671 (±0.0145) 0.8256 (±0.0129) 0.8562 (±0.0115)
LR 0.8700 (±0.0261) 0.7640 (±0.0346) 0.8140 (±0.0221) 0.8500 (±0.0030)
NB 0.7640 (±0.0177) 0.8510 (±0.0185) 0.8050 (±0.0048) 0.8720 (±0.0074)

RBF 0.7720 (±0.0182) 0.8830 (±0.0191) 0.8240 (±0.0145) 0.8790 (±0.0031)
CRF 0.8081 (±0.0252) 0.8771 (±0.0249) 0.8360 (±0.0087) 0.9025 (±0.0025)

Confluence 0.8818 (±0.0105) 0.9089 (±0.0130) 0.8818 (±0.0084) 0.9579 (±0.0022)

types of social features: social balance (SB), structure hole (SH),
opinion leader (OL), strong tie/weak tie (STWT), and conformity
(CF). Here we examine the contributions of the different social fac-
tors defined in our model. Specifically, first we use the basic fea-
tures to train a model (referred to as Confluencebase). Then we
incrementally add one of the five social features and evaluate its
improvement on the prediction performance over that using only
basic features. Figure 3 shows the Area Under Curve (AUC) score
on the different data sets. We see that different social factors con-
tribute differently in the different networks. For example, the opin-
ion leader based features are very useful in the Gowalla network,
but less useful in the Co-Author network. On the other hand, the
conformity based features consistently improve the prediction per-
formance on all the networks. In terms of the AUC score, the im-
provements by adding conformity features range from 2% to 20%
in the four networks. This analysis confirms the importance of the
conformity phenomena in social networks.

Effects of conformity. We further present an in-depth analysis
of how different levels of conformities affect the performance of
action prediction. Figure 4 shows the prediction performance (in
terms of AUC) of the proposed Confluence by considering differ-
ent levels of conformities. Confluencebase stands for the Conflu-
ence method by considering only basic features (i.e., ignoring all
conformity factors). It can be clearly seen that without the confor-
mity based factors, the prediction performance drop significantly.
Co-Author network is most predictable because the co-authorships
are stable and predictable in general. Weibo and Flickr are the
most difficult to predict because the user behavior is fairly au-
tonomous and independent. Conformity has most significant pre-
diction impact on Gowalla, which suggests conformity plays an
important role in geospatial and mobile applications in social net-
works. By incorporating the conformity features, significant im-
provements (+20-30%) over the prediction performance can be ob-
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Figure 4: Effect of conformity. Confluencebase stands for the Con-

fluence method without any social based features. Confluencebase+I

stands for the Confluencebase method plus only individual conformity

features. Confluencebase+P stands for the Confluencebase method

plus only peer conformity features. Confluencebase+G stands for the

Confluencebase method plus only group conformity.

tained on Gowalla. Confluencebase+I (or +P or +G) respectively
indicates that we respectively add individual conformity features
(or peer conformity features or group conformity features) into
the Confluencebase method. By incorporating each type of con-
formity factors, we observe clear improvement compared to the
Confluencebase method. We can also see that on all the four data
sets, the group conformity is more important than the other two
types of conformities. This makes sense, as in most cases confor-
mity is a group phenomenon rather than an individual behavior.

4.3 Scalability Performance
We now evaluate the scalability performance of the distributed

learning algorithm on the four networks. In our experiments, we
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Figure 5: Scalability performance.

Table 4: Running time of the proposed algorithm (hour).

Data Set Flickr Gowalla Weibo Co-Author

Confluence 1.602 0.245 1.083 0.512

Confluence (single) 19.637 2.395 11.229 6.464

CRF 3.864 0.387 2.547 1.823

use METIS [16] to partition the graph into multiple subgraphs (one
for each core). Figure 5 shows the speedup of the distributed algo-
rithm with different number of computer nodes (2, 3, 6, 8, 10, 12,
14, 16 cores) used. The speedup curve is close to the perfect line at
the beginning. Though the speedup inevitably decreases due to the
increase of the communication cost between the different computer
nodes, the distributed learning algorithm can still achieve ∼ 9×
speedup with 16 cores. It is noticeable that the speedup curves on
different networks present a bit different patterns. This is due to
the difference of the network properties (such as densities). Table 4
further gives the running time for learning the proposed Confluence
model over 16 computer cores and single compute on different data
sets.

Another thing worth noting is that the distributed learning is es-
sentially an approximation of the original learning algorithm on
a single machine. We used METIS to partition the graph into
multiple subgraphs and distribute the subgraphs onto slave ma-
chines. We also evaluate the prediction performance by the dis-
tributed learning algorithm. On average, the prediction accuracy
by the distributed learning over 16 cores only drops slightly (rang-
ing from 0.5-1.68%), which further demonstrates the effectiveness
of the distributed learning algorithm.

4.4 Qualitative Case Study
Now we use a case study from Flickr to further demonstrate the

effectiveness of the proposed model. Figure 6 shows an exam-
ple extracted from Flickr. User A joined three groups (denoted as
Group 1, 2, 3 respectively). On 03/10/2012, user A added one com-
ment respectively to Picture 1 and Picture 2. The Action 1 (adding
comment to Picture 1) was mainly performed in Group 1 and the
Action 2 (adding comment to Picture 2) was mainly performed in
Group 2. After modeling with the proposed Confluence method,
the modeling results suggest that, for performing Action 1, user A
has a strong conformity to user B, but very weak conformity to user
D and C. By taking a closer look at the data, we found that Group 1
is a loosely connected group and members have very few connec-
tions in the group, and the comments to the same photo are very
controversial (such as the comments of B and D to Picture 1). Thus
the influence between users are mainly at the peer level. For Ac-

Group 3

[03/13]:Beautiful

compo and light.

[03/17]:Lovely capture...

[03/14]:what a lovely place 

here..have a great weekend

[03/17]:Like! @A, do you like it?

[02/16]:Puerile

[03/17]:This is a beautiful shot. 

Wonderful trip! LOVE U!

[03/16]:Wonderful!!! :)

[02/19]:Congrats on being on 

Flickr EXPLORE today!

 Cheers :) <3

[03/18]:beautiful shot…

lovely sky colors..

Memorable Trip J 

Group 1:

Comment Pic 1

Group 2:

Comment

Pic 2

Action 2: 

Comment 

Pic 2

Action 1: Comment Pic 1

[03/18]:Certainly some 

very beautiful scenes.

Pic 2

Pic 1
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Figure 6: Case Study. User A joined three groups (Group 1, 2, 3).

He performed two actions on 03/10/2012 (Action 1: add comment to

Picture 1 and Action 2: add comment to Picture 2). Modeling results

(by the Confluence model) suggest that User A has a strong conformity

to user B and Group 2.

tion 2, the modeling result suggests that user A has a strong group
conformity to Group 2. By checking the data, we found that Group
2 is a tourist group, where people posted their photos taken in the
trip. Thus it is very likely that many users added comments to some
popular photos together.

5. RELATED WORK
Conformity was first studied by psychologist through interviews

with small groups of participants. Kelman [17] identified three ma-
jor types of conformity. However, the categorization is mainly from
subject and cannot easily be detected by a computational model.
In economics, Bernheim [3] proposed the social conformity the-
ory and presented a model for modeling the conformity process.
However, due to the lack of real data, he mainly focused on the
theoretical aspect of the model.

Considerable work has been conducted for studying the effects
of social influence. For example, Bakshy et al. [2] conducted ran-
domized controlled trials to identify the effect of social influence
on consumer responses to advertising, and Bond et al. [4] used a
randomized controlled trial to verify the social influence on politi-
cal voting behavior. Anagnostopoulos et al. [1] proposed a shuffle
test to examine the existence of social influence. However, most
of the methods focus on qualitatively study the existence of social
influence in different networks. Tang et al. [32] presented a Topi-
cal Affinity Propagation (TAP) approach to quantify the topic-level
social influence in large networks. Goyal et al. [13] presented a
method to learn the influence probabilities by counting the num-
ber of correlated social actions. Tan et a. [30] proposed a model
to learn and distinguish the effects of influence, correlation, and
uses’ action dependency. However, all the aforementioned works
mainly consider the peer influence between users and ignore the
group conformity effect. Zhang et al. [35] proposed the concept of



social influence locality and used a large microblogging network
to study how users’ behavior is influenced by close friends in their
ego networks. Li et al. [22] tried to study the interplay between
influence and individual conformity. However, they do not con-
sider the group conformity. Quite a few studies have been done for
maximizing the influence spread in social network. Domingos and
Richardson [10, 28] formally defined influence maximization as an
algorithmic problem and prove its NP-hardness. Chen et al. [6]
further developed efficient algorithms to approximately solve the
influence maximization problem. While, influence maximization
is in nature different from the conformity analysis problem. To the
best of our knowledge, this is the first attempt to formally define
the problem of conformity influence analysis and to address this
problem with a principled method.

6. CONCLUSION
In this paper, we study a novel problem of conformity influence

analysis in large social networks. We formally define three major
types of conformities, precisely formulate the problem of confor-
mity influence analysis, and propose a Confluence model to model
users’ actions and conformity. Three factor functions are defined
to capture the different levels of conformities. A distributed learn-
ing algorithm is presented to efficiently learn the proposed model.
We validate the effectiveness and efficiency of the proposed model
on four networks. Our experimental results show that the proposed
method significantly outperforms several alternative methods. We
also present a case study to further demonstrate the effectiveness of
the method.

Understanding the fundamental mechanism of social conformity
is very important for social network analysis and represents a new
and interesting research direction. As for the future work, it would
be intriguing to connect the conformity phenomenon with some
other social theories such as social status and structural holes so
as to understand the formation and dynamic change of the network
structure. It is also interesting to design some other model, for
example a game theory based model, to model the conformity phe-
nomenon. As for the proposed Confluence model itself, it has many
parameters. We also consider adding regularization to control the
sparsity of those parameters.
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