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ABSTRACT
In large social networks, nodes (users, entities) are influenced by
others for various reasons. For example, the colleagues have strong
influence on one’s work, while the friends have strong influence on
one’s daily life. How to differentiate the social influences from dif-
ferent angles(topics)? How to quantify the strength of those social
influences? How to estimate the model on real large networks?

To address these fundamental questions, we propose Topical Affin-
ity Propagation (TAP) to model the topic-level social influence on
large networks. In particular, TAP can take results of any topic
modeling and the existing network structure to perform topic-level
influence propagation. With the help of the influence analysis, we
present several important applications on real data sets such as 1)
what are the representative nodes on a given topic? 2) how to iden-
tify the social influences of neighboring nodes on a particular node?

To scale to real large networks, TAP is designed with efficient
distributed learning algorithms that is implemented and tested un-
der the Map-Reduce framework. We further present the common
characteristics of distributed learning algorithms for Map-Reduce.
Finally, we demonstrate the effectiveness and efficiency of TAP on
real large data sets.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Text Mining; H.2.8
[Database Management]: Database Applications

General Terms
Algorithms, Experimentation

Keywords
Social Influence Analysis, Topical Affinity Propagation, Large-scale
Network, Social Networks

1. INTRODUCTION
With the emergence and rapid proliferation of social applications

and media, such as instant messaging (e.g., IRC, AIM, MSN, Jab-
ber, Skype), sharing sites (e.g., Flickr, Picassa, YouTube, Plaxo),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

blogs (e.g., Blogger, WordPress, LiveJournal), wikis (e.g., Wikipedia,
PBWiki), microblogs (e.g., Twitter, Jaiku), social networks (e.g.,
MySpace, Facebook, Ning), collaboration networks (e.g., DBLP)
to mention a few, there is little doubt that social influence is becom-
ing a prevalent, complex and subtle force that governs the dynamics
of all social networks. Therefore, there is a clear need for methods
and techniques to analyze and quantify the social influences.

Social network analysis often focus on macro-level models such
as degree distributions, diameter, clustering coefficient, communi-
ties, small world effect, preferential attachment, etc; work in this
area includes [1, 11, 19, 23]. Recently, social influence study has
started to attract more attention due to many important applications.
However, most of the works on this area present qualitative findings
about social influences[14, 16]. In this paper, we focus on measur-
ing the strength of topic-level social influence quantitatively. With
the proposed social influence analysis, many important questions
can be answered such as 1) what are the representative nodes on
a given topic? 2) how to identify topic-level experts and their so-
cial influence to a particular node? 3) how to quickly connect to a
particular node through strong social ties?
Motivating Application

Several theories in sociology [14, 16] show that the effect of the
social influence from different angles (topics) may be different. For
example, in research community, such influences are well-known.
Most researchers are influenced by others in terms of collaboration
and citations. The most important information in the research com-
munity are 1) co-author networks, which capture the social dynam-
ics of the community, 2) their publications, which imply the topic
distribution (interests) of the authors. The key question is how to
quantify the influence among researchers by leveraging these two
pieces.

In Figure 1, the left figure illustrates the input: a co-author net-
work of 7 researchers, and the topic distribution of each researcher.
For example, George has the same probability (.5) on both topics,
“data mining” and “database”; The right figure shows the output of
our social influence analysis: two social influence graphs, one for
each topic, where the arrows indicate the direction and strength. We
see, Ada is the key person on “data mining”, while Eve is the key
person on “database”. Thus, the goal is how to effectively and effi-
ciently obtain the social influence graphs for real large networks.
Challenges and Contributions

The challenges of computing social influence graphs are the fol-
lowing:

• Multi-aspect. Social influences are associated with different
topics. E.g., A can have high influence to B on a particular
topic, but B may have a higher influence to A on another
topic. It is important to be able to differentiate those influ-
ences from multiple aspects.

807



Ada

Frank

Eve David

Carol

Bob

George

Input: coauthor network

Ada

Frank

Eve David

Carol

George

Social influence anlaysis�
i1�
i2

Topic 

distribution

g(v1,y1,z)�
i1�
i2

Topic

distribution

Node factor function

f (yi,yj, z)

Edge factor function

rz

az

Output: topic-based social influences

Topic 1: Data mining

Topic 2: Database
Topics:

Bob

Output

Ada

Frank

Eve

BobGeorge

Topic 1: Data mining

Ada

Frank

Eve David

George

Topic 2: Database

. . .

Figure 1: Social influence analysis illustration using the co-author network.

• Node-specific. Social influences are not a global measure
of importance of nodes, but an importance measure on links
between nodes.

• Scalability. Real social networks are getting bigger with thou-
sands or millions of nodes. It is important to develop the
method that can scale well to real large data sets.

To address the above challenges, we propose Topical Affinity
Propagation (TAP) to model the topic-level social influence on large
networks. In particular, TAP takes 1) the results of any topic mod-
eling such as a predefined topic ontology or topic clusters based
on pLSI [15] and LDA [3] and 2) the existing network structure to
perform topic-level influence propagation. More formally, given a
social network G = (V, E) and a topic model on the nodes V , we
compute topic-level social influence graphs Gz = (Vz, Ez) for all
topic 1 ≤ z ≤ T . The key features of TAP are the following:

• TAP provides topical influence graphs that quantitatively mea-
sure the influence on a fine-grain level;

• The influence graphs from TAP can be used to support other
applications such as finding representative nodes or construct-
ing the influential subgraphs;

• An efficient distributed learning algorithm is developed for
TAP based on the Map-Reduce framework in order to scale
to real large networks.

The rest of the paper is organized as follows: Section 2 formally
formulates the problem; Section 3 explains the proposed approach.
Section 4 presents experimental results that validate the computa-
tional efficiency of our methodology. Finally, Section 5 discusses
related work and Section 6 concludes.

2. OVERVIEW
In this section, we present the problem formulation and the intu-

ition of our approach.

2.1 Problem Formulation
The goal of social influence analysis is to derive the topic-level

social influences based on the input network and topic distribution
on each node. First we introduce some terminology, and then define
the social influence analysis problem.

Topic distribution: In social networks, a user usually has in-
terests on multiple topics. Formally, each node v ∈ V is associ-
ated with a vector θv ∈ RT of T -dimensional topic distribution
(
∑

z θvz = 1). Each element θvz is the probability(importance) of
the node on topic z.

Topic-based social influences: Social influence from node s to
t denoted as µst is a numerical weight associated with the edge
est. In most cases, the social influence score is asymmetric, i.e.,
µst 6= µts. Furthermore, the social influence from node s to t will
vary on different topics.

Thus based on the above concepts, we can define the tasks of
topic-based social influence analysis. Given a social network G =
(V, E) and a topic distribution for each node, the goal is to find the
topic-level influence scores on each edge.

Problem 1. Given 1) a network G = (V, E), where V is the
set of nodes (users, entities) and E is the set of directed/undirected
edges, 2) T -dimensional topic distribution θv ∈ RT for all node v
in V , how to find the topic-level influence network Gz = (Vz, Ez)
for all topics 1 ≤ z ≤ T ? Here Vz is a subset of nodes that are
related to topic z and Ez is the set of pair-wise weighted influence
relations over Vz , each edge is the form of a triplet (vs, vt, µ

z
st) (or

shortly (est, µ
z
st)), where the edge is from node vs to node vt with

the weight µz
st.

Our formulation of topic-based social influence analysis is quite
different from existing works on social network analysis. For social
influence analysis, [2] and [21] propose methods to qualitatively
measure the existence of influence. [6] studies the correlation be-
tween social similarity and influence. The existing methods mainly
focus on qualitative identification of the existence of influence, but
do not provide a quantitative measure of the influential strength.

2.2 Our Approach
The social influence analysis problem poses a unique set of chal-

lenges:
First, how to leverage both node-specific topic distribution and

network structure to quantify social influence? In another word,
a user’s influence on others not only depends on their own topic
distribution, but also relies on what kinds of social relationships
they have with others. The goal is to design a unified approach to
utilize both the local attributes (topic distribution) and the global
structure (network information) for social influence analysis.
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Second, how to scale the proposed analysis to a real large so-
cial network? For example, the academic community of Computer
Science has more than 1 million researchers and more than 10 mil-
lion coauthor relations; Facebook has more than 50 millions users
and hundreds of millions of different social ties. How to efficiently
identify the topic-based influential strength for each social tie is
really a challenging problem.

Next we discuss the data input and the main intuition of the pro-
posed method.
Data Input:

Two inputs are required to our social influence analysis: 1) net-
works and 2) topic distribution on all nodes.

The first input is the network backbone obtained by any social
networks, such as online social networks like Facebook and MyS-
pace.

The second input is the topic distribution for all nodes. In gen-
eral, the topic information can be obtained in many different ways.
For example, in a social network, one can use the predefined cat-
egories as the topic information, or use user-assigned tags as the
topic information. In addition, we can use statistical topic model-
ing [3, 15, 18] to automatically extract topics from the social net-
working data. In this paper, we use the topic modeling approach to
initialize the topic distribution of each node.
Topical Affinity Propagation (TAP):

Based on the input network and topic distribution on the nodes,
we formalize the social influence problem in a topical factor graph
model and propose a topical affinity propagation on the factor graph
to automatically identify the topic-specific social influence.

Our main idea is to leverage an affinity propagation at the topic-
level for social influence identification. The approach is based on
the theory of factor graph [17], in which the observation data are
cohesive on both local attributes and relationships. In our setting,
the node corresponds to the observation data in the factor graph
and the social relationship corresponds to edge between the obser-
vation data in the graph. Finally, we propose two different propaga-
tion rules: one based on message passing on graphical models, the
other one is a parallel update rule that is suitable for Map-Reduce
framework.

3. TOPICAL AFFINITY PROPAGATION
The goal of topic-based social influence analysis is to capture

the following information: nodes’ topic distributions, similarity
between nodes, and network structure. In addition, the approach
has to be able to scale up to a large scale network. Following this
thread, we first propose a Topical Factor Graph (TFG) model to
incorporate all the information into a unified probabilistic model.
Second, we propose Topical Affinity Propagation (TAP) for model
learning. Third, we discuss how to do distributed learning in the
Map-Reduce framework. Finally, we illustrate several applications
based on the results of social influence analysis.

3.1 Topical Factor Graph (TFG) Model
Now we formally define the proposed TFG model.

Variables The TFG model has the following components: a set of
observed variables {vi}N

i=1 and a set of hidden vectors {yi}N
i=1,

which corresponds to the N nodes in the input network. Notations
are summarized in table 1.

The hidden vector yi ∈ {1, . . . , N}T models the topic-level in-
fluences from other nodes to node vi. Each element yz

i , taking
the value from the set {1, . . . , N}, represents the node that has the
highest probability to influence node vi on topic z.

For example, Figure 2 shows a simple example of an TFG. The
observed data consists of four nodes {v1, . . . , v4}, which have cor-

Table 1: Notations.
SYMBOL DESCRIPTION

N number of nodes in the social network
M number of edges in the social network
T number of topics
V the set of nodes in the social network
E the set of edges
vi a single node
yz

i node-vi’s representative on topic z
yi the hidden vector of representatives for all topics on node vi

θz
i the probability for topic z to be generated by the node vi

est an edge connecting node vs and node vt

wz
st the similarity weight of the edge est w.r.t. topic z

µz
st the social influence of node vs on node vt w.r.t. topic z

responding hidden vectors Y = {y1, . . . , y4}. The edges between
the hidden nodes indicate the four social relationships in the origi-
nal network (aka the edges of the input network).
Feature Functions There are three kinds of feature functions:

• Node feature function g(vi, yi, z) is a feature function de-
fined on node vi specific to topic z.

• Edge feature function f(yi, yj , z) is a feature function de-
fined on the edge of the input network specific to topic z.

• Global feature function h(y1, . . . , yN , k, z) is a feature func-
tion defined on all nodes of the input network w.r.t. topic z.

Basically, node feature function g describes local information
on nodes, edge feature function f describes dependencies between
nodes via the edge on the graph model, and global feature function
captures constraints defined on the network.

In this work, we define the node feature function g as:

g(vi, yi, z) =





wz
iyz

i∑
j∈NB(i)(w

z
ij+wz

ji)
yz

i 6= i
∑

j∈NB(i) wz
ji∑

j∈NB(i)(w
z
ij+wz

ji)
yz

i = i
(1)

where NB(i) represents the indices of the neighboring nodes of
node vi; wz

ij = θz
j αij reflects the topical similarity or interaction

strength between vi and vj , with θz
j denoting the importance of

node-j to topic z, and αij denoting the weight of the edge eij .
αij can be defined by different ways. For example, in a coauthor
network, αij can be defined as the number of papers coauthored by
vi and vj . The above definition of the node feature function has
the following intuition: if node vi has a high similarity/weight with
node vyi , then vyi may have a high influence on node vi; or if node
vi is trusted by other users, i.e. other users take him as an high
influential node on them, then it must also “trust” himself highly
(taking himself as a most influential user on him).

As for the edge feature function, we define a binary feature func-
tion, i.e., f(yi, yj , z) = 1 if and only if there is an edge eij be-
tween node vi and node vj , otherwise 0. We also define a global
edge feature function h on all nodes, i.e.:

h(y1, . . . , yN , k, z) =

{
0 if yz

k = k and yz
i 6= k for all i 6= k

1 otherwise. (2)

Intuitively, h(·) constrains the model to bias towards the “true” rep-
resentative nodes, More specially, a representative node on topic
z must be the representative of itself on topic z, i.e., yz

k = k.
And it must be a representative of at least another node vi, i.e.,
∃yz

i = k, i 6= k.
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Figure 2: Graphical representation of the topical factor graph
model. {v1, . . . , v4} are observable nodes in the social network;
{y1, . . . , y4} are hidden vectors defined on all nodes, with each
element representing which node has the highest probability
to influence the corresponding node; g(.) represents a feature
function defined on a node, f(.) represents a feature function
defined on an edge; and h(.) represents a global feature func-
tion defined for each node, i.e. k ∈ {1, . . . , N}.

Joint Distribution Next, a factor graph model is constructed based
on this formulation. Typically, we hope that a model can best fit
(reconstruct) the observation data, which is usually represented by
maximizing the likelihood of the observation. Thus we can define
the objective likelihood function as:

P (v, Y) =
1

Z

N∏

k=1

T∏

z=1

h(y1, . . . , yN , k, z)

N∏

i=1

T∏

z=1

g(vi, yi, z)
∏

ekl∈E

T∏

z=1

f(yk, yl, z) (3)

where v = [v1, . . . , vN ] and Y = [y1, . . . , yN ] corresponds to all
observed and hidden variables, respectively; g and f are the node
and edge feature functions; h is the global feature function; Z is a
normalizing factor.

The factor graph in Figure 2 describes this factorization. Each
black box corresponds to a term in the factorization, and it is con-
nected to the variables on which the term depends.

Based on this formulation, the task of social influence is cast
as identifying which node has the highest probability to influence
another node on a specific topic along with the edge. That is, to
maximize the likelihood function P (v, Y). One parameter config-
uration is shown in Figure 2. On topic 1, both node v1 and node
v3 are strongly influenced by node v2, while node v2 is mainly in-
fluenced by node v4. On topic 2, the situation is different. Almost
all nodes are influenced by node v1, where node v4 is indirectly
influenced by node v1 via the node v2.

3.2 Basic TAP Learning
Baseline: Sum-Product To train the TFG model, we can take Eq.
3 as the objective function to find the parameter configuration that
maximizes the objective function. While it is intractable to find the
exact solution to Eq. 3, approximate inference algorithms such as
sum-product algorithm[17], can be used to infer the variables y.

In sum-product algorithm, messages are passed between nodes
and functions. Message passing is initiated at the leaves. Each

node vi remains idle until messages have arrived on all but one
of the edges incident on the node vi. Once these messages have
arrived, node vi is able to compute a message to be sent onto the
one remaining edge to its neighbor. After sending out a message,
node vi returns to the idle state, waiting for a “return message”
to arrive from the edge. Once this message has arrived, the node is
able to compute and send messages to each of neighborhood nodes.
This process runs iteratively until convergence.

However, traditional sum-product algorithm cannot be directly
applied for multiple topics. We first consider a basic extension of
the sum-product algorithm: topical sum-product. The algorithm
iteratively updates a vector of messages m between variable nodes
and factor (i.e. feature function) nodes. Hence, two update rules
can be defined respectively for a topic-specific message sent from
variable node to factor node and for a topic-specific message sent
from factor node to variable node.

my→f (y, z) =
∏

f′∼y\f

mf′→y(y, z)
∏

z′ 6=z

∏

f′∼y\f

mf′→y(y, z
′
)
(τ

z′z)

mf→y(y, z) =
∑

∼{y}


f(Y, z)

∏

y′∼f\y

my′→f (y
′
, z)




+
∑

z′ 6=z

τz′z
∑

∼{y}


f(Y, z

′
)

∏

y′∼f\y

my′→f (y
′
, z
′
)


 (4)

where

• f ′ ∼ y\f represents f ′ is a neighbor node of variable y on
the factor graph except factor f ;

• Y is a subset of hidden variables that feature function f is
defined on; for example, a feature f(yi, yj) is defined on
edge eij , then we have Y = {yi, yj}; ∼ {y} represents all
variables in Y except y;

• the sum
∑
∼{y} actually corresponds to a marginal function

for y on topic z;

• and coefficient τ represents the correlation between topics,
which can be defined in many different ways. In this work
we, for simplicity, assume that topics are independent. That
is, τzz′ = 1 when z = z′ and τzz′ = 0 when z 6= z′. In
the following, we will propose two new learning algorithms,
which are also based this independent assumption.

New Learning Algorithm However, the sum-product algorithm
requires that each node need wait for all(-but-one) message to ar-
rive, thus the algorithm can only run in a sequential mode. This
results in a high complexity of O(N4 × T ) in each iteration. To
deal with this problem, we propose an affinity propagation algo-
rithm, which converts the message passing rules into equivalent
update rules passing message directly between nodes rather than
on the factor graph. The algorithm is summarized in Algorithm 1.
In the algorithm, we first use logarithm to transform sum-product
into max-sum, and introduce two sets of variables {rz

ij}T
z=1 and

{az
ij}T

z=1 for each edge eij . The new update rules for the variables
are as follows: (Derivation is omitted for brevity.)

rz
ij = bz

ij − max
k∈NB(j)

{bz
ik + az

ik} (5)

az
jj = max

k∈NB(j)
min {rz

kj , 0} (6)

az
ij = min(max {rz

jj , 0},−min {rz
jj , 0}

− max
k∈NB(j)\{i}

min {rz
kj , 0}), i ∈ NB(j) (7)
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where NB(j) denotes the neighboring nodes of node j, rz
ij is the

influence message sent from node i to node j and az
ij is the influ-

ence message sent from node j to node i, initiated by 0, and bz
ij is

the logarithm of the normalized feature function

bz
ij = log

g(vi, yi, z)|yz
i =j∑

k∈NB(i)∪{i} g(vi, yi, z)|yz
i =k

(8)

The introduced variables r and a have the following nice expla-
nation. Message az

ij reflects, from the perspective of node vj , how
likely node vj thinks he/she influences on node vi with respect to
topic z, while message rz

ij reflects, from the perspective of node vi,
how likely node vi agrees that node vj influence on him/her with
respect to topic z. Finally, we can define the social influence score
based on the two variables r and a using a sigmoid function:

µz
st =

1

1 + e−(rz
ts+az

ts)
(9)

The score µz
st actually reflects the maximum of P (v,Y, z) for

yz
t = s, thus the maximization of P (v,Y, z) can be obtained by

yz
t = arg max

s∈NB(t)∪{t}
µz

st (10)

Input: G = (V, E) and topic distributions {θv}v∈V

Output: topic-level social influence graphs {Gz = (Vz, Ez)}T
z=1

Calculate the node feature function g(vi, yi, z);1.1
Calculate bz

ij according to Eq. 8;1.2
Initialize all {rz

ij} ← 0;1.3
repeat1.4

foreach edge-topic pair (eij , z) do1.5
Update rz

ij according to Eq. 5;1.6
end1.7
foreach node-topic pair (vj , z) do1.8

Update az
jj according to Eq. 6;1.9

end1.10
foreach edge-topic pair (eij , z) do1.11

Update az
ij according to Eq. 7;1.12

end1.13
until convergence;1.14
foreach node vt do1.15

foreach neighboring node s ∈ NB(t) ∪ {t} do1.16
Compute µz

st according to Eq. 9;1.17
end1.18

end1.19
Generate Gz = (Vz, Ez) for every topic z according to {µz

st};1.20

Algorithm 1: The new TAP learning algorithm.

Finally, according to the obtained influence scores {µz
st} and the

topic distribution {θv}, we can easily generate the topic-level so-
cial influence graphs. Specifically, for each topic z, we first filter
out irrelevant nodes, i.e., nodes that have a lower probability than
a predefined threshold. An alternative way is to keep only a fixed
number (e.g., 1,000) of nodes for each topic-based social influence
graph. (This filtering process can be also taken as a preprocessing
step of our approach, which is the way we conducted our experi-
ments.) Then, for a pair of nodes (vs, vt) that has an edge in the
original network G, we create two directed edges between the two
nodes and respectively assign the social influence scores µz

st and
µz

ts. Finally, we obtain a directed social influence graph Gz for the
topic z.

The new algorithm reduces the complexity of each iteration from
O(N4 × T ) in the sum-product algorithm to O(M × T ). More
importantly, the new update rules can be easily parallelized.

3.3 Distributed TAP Learning
As a social network may contain millions of users and hundreds

of millions of social ties between users, it is impractical to learn
a TFG from such a huge data using a single machine. To address
this challenge, we deploy the learning task on a distributed system
under the map-reduce programming model [9].

Map-Reduce is a programming model for distributed processing
of large data sets. In the map stage, each machine (called a process
node) receives a subset of data as input and produces a set of in-
termediate key/value pairs. In the reduce stage, each process node
merges all intermediate values associated with the same interme-
diate key and outputs the final computation results. Users specify
a map function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that merges all
intermediate values associated with the same intermediate key.

In our affinity propagation process, we first partition the large
social network graph into subgraphs and distribute each subgraph
to a process node. In each subgraph, there are two kinds of nodes:
internal nodes and marginal nodes. Internal nodes are those all
of whose neighbors are inside the very subgraph; marginal nodes
have neighbors in other subgraphs. For every subgraph G, all in-
ternal nodes and edges between them construct the closed graph Ḡ.
The marginal nodes can be viewed as “the supporting information”
for updating the rules. For easy explanation, we consider the dis-
tributed learning algorithm on a single topic and thus the map stage
and the reduce stage can be defined as follows.

In the map stage, each process node scans the closed graph Ḡ
of the assigned subgraph G. Note that every edge eij has two
values az

ij and rij . Thus, the map function is defined as for ev-
ery key/value pair eij/aij , it issues an intermediate key/value pair
ei∗/(bij + aij); and for key/value pair eij/rij , it issues an inter-
mediate key/value pair e∗j/rij .

In the reduce stage, each process node collects all values associ-
ated with an intermediate key ei∗ to generate new ri∗ according to
Eq. (5), and all intermediate values associated with the same key
e∗j to generate new a∗j according to Eqs. (6) and (7). Thus, the
one time map-reduce process corresponds to one iteration in our
affinity propagation algorithm.

3.4 Model Application
The social influence graphs by TAP can help with many appli-

cations. Here we illustrate one application on expert identification,
i.e., to identify representative nodes from social networks on a spe-
cific topic.

Here we present 3 methods for expert identification: 1) PageR-
ank+LanguageModeling (PR), 2) PageRank with global Influence
(PRI) and 3) PageRank with topic-based influence (TPRI).
Baseline: PR One baseline method is to combine the language
model and PageRank [24]. Language model is to estimate the rele-
vance of a candidate with the query and PageRank is to estimate the
authority of the candidate. There are different combination meth-
ods. The simplest combination method is to multiply or sum the
PageRank ranking score and the language model relevance score.
Proposed 1: PRI In PRI, we replace the transition probability in
PageRank with the influence score. Thus we have

r[v] = β
1

|V | + (1− β)
∑

v′:v′→v

r[v′]p(v|v′) (11)

In traditional PageRank algorithm, p(v|v′) is simply the value of
one divides the number of outlinks of node v′. Here, we consider
the influence score. Specifically we define

p(v|v′) =

∑
z µz

v′v∑
vj :v′→vj

∑
z µz

v′vj
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Proposed 2: TPRI In the second extension, we introduce, for each
node v, a vector of ranking scores r[v, z], each of which is specific
to topic z. Random walk is performed along with the coauthor
relationship between authors within the same topic. Thus the topic-
based ranking score is defined as:

r[v, z] = β
1

|V |p(zk|v) + (1− β)
∑

v′:v′→v

r[v′, z]p(v|v′, z) (12)

where p(z|v) is the probability of topic z generated by node v and
it is obtained from the topic model; p(v|v′, z) represents the prob-
ability of node v′ influencing node v on topic z; we define it as

p(v|v′, z) =
µz

v′v∑
vj :v′→vj

µz
v′vj

4. EXPERIMENTAL RESULTS
In this section, we present various experiments to evaluate the

efficiency and effectiveness of the proposed approach. All data
sets, codes, and tools to visualize the generated influence graphs
are publicly available at http://arnetminer.org/lab-datasets/soinf/.

4.1 Experimental Setup

4.1.1 Data Sets
We perform our experiments on three real-world data sets: two

homogeneous networks and one heterogeneous network. The ho-
mogeneous networks are academic coauthor network (shortly Coau-
thor) and paper citation network (shortly Citation). Both are ex-
tracted from academic search system Arnetminer1. The coauthor
data set consists of 640,134 authors and 1,554,643 coauthor re-
lations, while the citation data set contains 2,329,760 papers and
12,710,347 citations between these papers. Topic distributions of
authors and papers are discovered using a statistical topic modeling
approach, Author-Conference-Topic (ACT) model [25]. The ACT
approach automatically extracts 200 topics and assigns an author-
specific topic distribution to each author and a paper-specific topic
distribution to each paper.

The other heterogeneous network is a film-director-actor-writer
network (shortly Film), which is crawled from Wikipedia under the
category of “English-language films”2. In total, there are 18,518
films, 7,211 directors, 10,128 actors, and 9,784 writers. There
are 142,426 relationships between the heterogeneous nodes in the
dataset. The relationship types include: film-director, film-actor,
film-writer, and other relationships between actors, directors, and
writers. The first three types of relationships are extracted from the
“infobox” on the films’ Wiki pages. All the other types of peo-
ple relationships are created as follows: if one people (including
actors, directors, and writers) appears on another people’s page,
then a directed relationship is created between them. Topic distri-
butions of the heterogeneous network is initialized using the cat-
egory information defined on the Wikipedia page. More specif-
ically, we take 10 categories with the highest occurring times as
the topics. The 10 categories are: “American film actors”, “Amer-
ican television actors”, “Black and white films”, “Drama films”,
“Comedy films”, “British films”, “American film directors”, “In-
dependent films”, “American screenwriters”, and “American stage
actors”. As for the topic distribution of each node in the Film net-
work, we first calculate how likely a node vi belong to a category
1http://arnetminer.org
2http://en.wikipedia.org/wiki/Category:
English-language_films

(topic) z, i.e. p(vi|z), according to 1
|Vz| , where |Vz| is the num-

ber of nodes in the category (topic) z. Thus, for each node, we
will obtain a set {p(vi|z)}T

z=1 of likelihood for each node. Then
we calculate the topic distribution {p(z|vi)}T

z=1 according to the
Bayesian rule p(z|vi) ∝ p(z)p(vi|z), where p(z) is the probabil-
ity of the category (topic).

4.1.2 Evaluation Measures
For quantitatively evaluate our method, we consider three per-

formance metrics:

• CPU time. It is the execution elapsed time of the computa-
tion. This determines how efficient our method is.

• Case study. We use several case studies to demonstrate how
effective our method can identify the topic-based social in-
fluence graphs.

• Application improvement. We apply the identified topic-
based social influence to help expert finding, an important
application in social network. This will demonstrate how the
quantitative measurement of the social influence can benefit
the other social networking application.

The basic learning algorithm is implemented using MATLAB
2007b and all experiments with it are performed on a Server run-
ning Windows 2003 with two Dual-Core Intel Xeon processors (3.0
GHz) and 8GB memory. The distributed learning algorithm is im-
plemented under the Map-Reduce programming model using the
Hadoop platform3. We perform the distributed train on 6 computer
nodes (24 CPU cores) with AMD processors (2.3GHz) and 48GB
memory in total. We set the maximum number of iterations as 100
and the threshold for the change of r and a to 1e − 3. The al-
gorithm can quickly converge after 7-10 iterations in most of the
times. In all experiments, for generating each of the topic-based
social influence graphs, we only keep 1,000 nodes that have the
highest probabilities p(v|z).

4.2 Scalability Performance
We evaluate the efficiency of our approach on the three data sets.

We also compare our approach with the sum-product algorithm.
Table 2 lists the CPU time required on the three data sets with

the following observations:
Sum-Product vs TAP The new TAP approach is much faster than
the traditional sum-product algorithm, which even cannot complete
on the citation data set.
Basic vs Distributed TAP The distributed TAP can typically achieve
a significant reduction of the CPU time on the large-scale network.
For example, on the citation data set, we obtain a speedup 15X.
While on a moderate scaled network (the coauthor data set), the
speedup of the distributed TAP is limited, only 3.6. On a relative
smaller network (the Film data set), the distributed learning un-
derperforms the basic TAP learning algorithm, which is due to the
communication overhead of the Map-Reduce framework.
Distributed Scalability We further conduct a scalability experi-
ment with our distributed TAP. We evaluate the speedup of the
distributed learning algorithm on the 6 computer nodes using the
citation data set with different sizes. It can be seen from Figure 3
(a) that when the size of the data set increase to nearly one million
edges, the distributed learning starts to show a good parallel effi-
ciency (speedup>3). This confirms that distributed TAP like many
distributed learning algorithms is good on large-scale data sets.

3http://hadoop.apache.org/
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Table 2: Scalability performance of different methods on real
data sets. >10hr means that the algorithm did not terminate
when the algorithm runs more than 10 hours.

Methods Citation Coauthor Film
Sum-Product N/A >10hr 1.8 hr

Basic TAP Learning >10hr 369s 57s
Distributed TAP Learning 39.33m 104s 148s
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(a) Dataset size vs. speedup (b) #Computer nodes vs. speedup

Table 3: Speedup results.

Using our large citation data set, we also perform speedup exper-
iments on a Hadoop platform using 1, 2, 4, 6 computer nodes (since
we did not have access to a large number of computer nodes). The
speedup, shown in 3 (b), show reasonable parallel efficiency, with
a > 4× speedup using 6 computer nodes.

4.3 Qualitative Case Study
Now we demonstrate the effectiveness of TAP of representative

nodes identification on the Coauthor and Citation data sets.
Table 4 shows representative nodes (authors and papers) found

by our algorithm on different topics from the coauthor data set
and the citation data set. The representative score of each node
is the probability of the node influencing the other nodes on this
topic. The probability is calculated by

∑
j∈NB(i)∪{i} µij∑N

i=1
∑

j∈NB(i)∪{j} µij
. We

can see some interesting results. For example, some papers (e.g.,
“FaCT and iFaCT”) that do have have a high citation number might
be selected as the representative nodes. This is because our algo-
rithm can identify the influences between papers, thus can differen-
tiate the citations of the theoretical background of a paper and an
odd citation in the reference.

Table 5 shows four representative authors and researchers who
are mostly influenced by them. Table 6 shows two representa-
tive papers and papers that are mostly influence by the two papers.
Some other method e.g., the similarity-based baseline method us-
ing cosine metric, can be also used to estimate the influence ac-
cording to the similarity score. Such a method was previously used
for analyzing the social influence in online communities [6]. Com-
paring with the similarity-based baseline method, our method has
several distinct advantages: First, such a method can only mea-
sure the similarity between nodes, but cannot tell which node has a
stronger influence on the other one. Second, the method cannot tell
which nodes have the highest influences in the network, which our
approach naturally has the capacity to do this. This provides many
immediate applications, for example, expert finding.

4.4 Quantitative Case Study
Now we conduct quantitatively evaluation of the effectiveness of

the topic-based social influence analysis through case study. Recall
the goal of expert finding is to identify persons with some expertise
or experience on a specific topic (query) q. We define the baseline

P@5 P@10 P@20 R−Pre MAP

PR
PRI
TPRI

(%
)

0
20

40
60

80
10

0

Table 7: Performance of expert finding with different ap-
proaches.

method as the combination [24] of the language model P (q|v) and
PageRank r[v].

We use an academic data set used in [24] [25] for the experi-
ments. Specifically, the data set contains 14, 134 authors, 10, 716
papers, and 1, 434 conferences. Four-grade scores (3, 2, 1, and
0) are manually labeled to represent definite expertise, expertise,
marginal expertise, and no expertise. Using this data, we create
a coauthor network. The topic model for each author is still ob-
tained using the statistical topic modeling approach [25]. With the
topic models, we apply the proposed TAP approach to the coauthor
network to identify the topic-based influences.

With the learned topic-based influence scores, we define two ex-
tensions to the PageRank method: PageRank with Influence (PRI)
and PageRank with topic-based influence (TPRI). Details of the
extension is described in Section 3.4. For expert finding, we can
further combine the extended PageRank model with the relevance
model, for example the language model by P (q|v)r[v] or a topic-
based relevance model by

∑
z p(q|z)p(z|v)r[v, z], where r[v] and

r[v, z] are obtained respectively from PRI and TPRI; p(q|z), p(z|v)
can be obtained from the statistical topic model [24].

We evaluate the performance of different methods in terms of
Precision@5 (P@5), P@10, P@20, R-precision (R-Pre), and mean
average precision (MAP) [4, 7]. Figure 7 shows the result of expert
finding with different approaches. We see that the topic-based so-
cial influences discovered by the TAP approach can indeed improve
the accuracy of expert finding, which confirms the effectiveness of
the proposed approach for topic-based social influence analysis.

5. RELATED WORK

5.1 Social Network and Influence
Much effort has been made for social network analysis and a

large number of work has been done. For example, methods are
proposed for identifying cohesive subgraphs within a network where
cohesive subgraphs are defined as “subsets of actors among whom
there are relatively strong, direct, intense, frequent, or positive ties”
[26]. Quite a few metrics have been defined to characterize a social
network, such as betweenness, closeness, centrality, centralization,
etc. A common application of the social network analysis is Web
community discovery. For example, Flake et al. [12] propose a
method based on maximum flow/minmum cut to identify Web com-
munities. As for social influence analysis, [2, 21] propose methods
to qualitatively measure the existence of influence. [6] studies the
correlation between social similarity and influence. Other similar
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Table 4: Representative nodes discovered by our algorithm on the Coauthor data set and the Citation data set.
Dataset Topic Representative Nodes

Author

Data Mining Heikki Mannila, Philip S. Yu, Dimitrios Gunopulos, Jiawei Han, Christos Faloutsos, Bing Liu, Vipin Kumar, Tom M. Mitchell,
Wei Wang, Qiang Yang, Xindong Wu, Jeffrey Xu Yu, Osmar R. Zaiane

Machine Learning Pat Langley, Alex Waibel, Trevor Darrell, C. Lee Giles, Terrence J. Sejnowski, Samy Bengio, Daphne Koller, Luc De Raedt,
Vasant Honavar, Floriana Esposito, Bernhard Scholkopf

Database System Gerhard Weikum, John Mylopoulos, Michael Stonebraker, Barbara Pernici, Philip S. Yu, Sharad Mehrotra, Wei Sun, V. S. Sub-
rahmanian, Alejandro P. Buchmann, Kian-Lee Tan, Jiawei Han

Information Retrieval Gerard Salton, W. Bruce Croft, Ricardo A. Baeza-Yates, James Allan, Yi Zhang, Mounia Lalmas, Zheng Chen, Ophir Frieder,
Alan F. Smeaton, Rong Jin

Web Services Yan Wang, Liang-jie Zhang, Schahram Dustdar, Jian Yang, Fabio Casati, Wei Xu, Zakaria Maamar, Ying Li, Xin Zhang, Boualem
Benatallah, Boualem Benatallah

Semantic Web Wolfgang Nejdl, Daniel Schwabe, Steffen Staab, Mark A. Musen, Andrew Tomkins, Juliana Freire, Carole A. Goble, James A.
Hendler, Rudi Studer, Enrico Motta

Bayesian Network Daphne Koller, Paul R. Cohen, Floriana Esposito, Henri Prade, Michael I. Jordan, Didier Dubois, David Heckerman, Philippe
Smets

Citation

Data Mining Fast Algorithms for Mining Association Rules in Large Databases, Using Segmented Right-Deep Trees for the Execution of
Pipelined Hash Joins, Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data, Discovery of Multiple-
Level Association Rules from Large Databases, Interleaving a Join Sequence with Semijoins in Distributed Query Processing

Machine Learning Object Recognition with Gradient-Based Learning, Correctness of Local Probability Propagation in Graphical Models with Loops,
A Learning Theorem for Networks at Detailed Stochastic Equilibrium, The Power of Amnesia: Learning Probabilistic Automata
with Variable Memory Length, A Unifying Review of Linear Gaussian Models

Database System Mediators in the Architecture of Future Information Systems, Database Techniques for the World-Wide Web: A Survey, The
R*-Tree: An Efficient and Robust Access Method for Points and Rectangles, Fast Algorithms for Mining Association Rules in
Large Databases

Web Services The Web Service Modeling Framework WSMF, Interval Timed Coloured Petri Nets and their Analysis, The design and imple-
mentation of real-time schedulers in RED-linux, The Self-Serv Environment for Web Services Composition

Web Mining Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data, Fast Algorithms for Mining Association Rules
in Large Databases, The OO-Binary Relationship Model: A Truly Object Oriented Conceptual Model, Distributions of Surfers’
Paths Through the World Wide Web: Empirical Characterizations, Improving Fault Tolerance and Supporting Partial Writes in
Structured Coterie Protocols for Replicated Objects

Semantic Web FaCT and iFaCT, The GRAIL concept modelling language for medical terminology, Semantic Integration of Semistructured and
Structured Data Sources, Description of the RACER System and its Applications, DL-Lite: Practical Reasoning for Rich Dls

Table 5: Example of influence analysis from the coauthor data set. There are two representative authors and example list of re-
searchers who are mostly influenced by them on topic “data mining”, and their corresponding influenced order on topic “database”
and “machine learning”.

Topic: Data Mining Topic: Database Topic: Machine Learning
Jiawei Han Heikki Mannila Jiawei Han Heikki Mannila Jiawei Han Heikki Mannila

David Clutter
Hasan M. Jamil

K. P. Unnikrishnan
Ramasamy Uthurusamy

Shiwei Tang

Arianna Gallo
Marcel Holsheimer

Robert Gwadera
Vladimir Estivill-Castro

Mika Klemettinen

David Clutter
Shiwei Tang

Hasan M. Jamil
Ramasamy Uthurusamy

K. P. Unnikrishnan

Vladimir Estivill-Castro
Marcel Holsheimer

Robert Gwadera
Mika Klemettinen

Arianna Gallo

Hasan M. Jamil
K. P. Unnikrishnan

Shiwei Tang
Ramasamy Uthurusamy

David Clutter

Vladimir Estivill-Castro
Marcel Holsheimer
Mika Klemettinen
Robert Gwadera
Arianna Gallo

work can be referred to [10]. To the best of our knowledge, no
previous work has been conducted for quantitatively measuring the
topic-level social influence on large-scale networks.

For the networking data, graphical probabilistic models are often
employed to describe the dependencies between observation data.
Markov random field [22], factor graph [17], Restricted Boltzmann
Machine(RBM) [27], and many others are widely used graphical
models. One relevant work is [13], which proposes an affinity prop-
agation algorithm for clustering by passing messages between data
points. The algorithm tries to identify exemplars among data points
and forms clusters of data points around these exemplars.

In this paper, we propose a Topical Factor Graph (TFG) model,
for quantitatively analyzing the topic-based social influences. Com-
pared with the existing work, the TFG can incorporate the corre-
lation between topics. We propose a very efficient algorithm for
learning the TFG model. In particular, a distributed learning algo-
rithm has been implemented under the Map-reduce programming
model.

5.2 Large-scale Mining
As data grows, data mining and machine learning applications

also start to embrace the Map-Reduce paradigm, e.g., news per-
sonalization with Map-Reduce EM algorithm [8], Map-Reduce of
several machine learning algorithms on multicore architecture [5].

Recently Papadimitriou and Sun [20] illustrates a mining frame-
work on Map-Reduce along with a case-study using co-clustering.

6. CONCLUSION AND FUTURE WORK
In this paper, we study a novel problem of topic-based social in-

fluence analysis. We propose a Topical Affinity Propagation (TAP)
approach to describe the problem using a graphical probabilistic
model. To deal with the efficient problem, we present a new algo-
rithm for training the TFG model. A distributed learning algorithm
has been implemented under the Map-reduce programming model.
Experimental results on three different types of data sets demon-
strate that the proposed approach can effectively discover the topic-
based social influences. The distributed learning algorithm also has
a good scalability performance. We apply the proposed approach to
expert finding. Experiments show that the discovered topic-based
influences by the proposed approach can improve the performance
of expert finding.

The general problem of network influence analysis represents an
new and interesting research direction in social network mining.
There are many potential future directions of this work. One inter-
esting issue is to extend the TFG model so that it can learn topic
distributions and social influences together. Another issue is to de-
sign the TAP approach for (semi-)supervised learning. Users may
provide feedbacks to the analysis system. How to make use of the
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Table 6: Example of influence analysis results on topic “data mining” from the citation data set. There are two representative papers
and example paper lists that are mostly influenced by them.

Fast Algorithms for Mining Association Rules in Large Databases Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data
Mining Large Itemsets for Association Rules
A New Framework For Itemset Generation
Efficient Mining of Partial Periodic Patterns in Time Series Database
A New Method for Similarity Indexing of Market Basket Data
A General Incremental Technique for Maintaining Discovered Association Rules

Mining Web Site?s Clusters from Link Topology and Site Hierarchy
Predictive Algorithms for Browser Support of Habitual User Activities on the Web
A Fine Grained Heuristic to Capture Web Navigation Patterns
A Road Map to More Effective Web Personalization: Integrating Domain Knowledge
with Web Usage Mining

useful supervised information to improve the analysis quality is an
interesting problem. Another potential issue is to apply the pro-
posed approach to other applications (e.g., community discovery)
to further validate its effectiveness.
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